首 页 网络介绍 CERN新闻 规章制度 在研项目 论文与出版物 学术动态 生态知识 人员招聘 人员组成 English
     机构介绍
     新闻栏目
     人员组成
     人员招聘
     在研项目
     论文与出版物


  论文与出版物
Hydrological and geocryological response of winter streamflow to climate warming in Northeast China
------------------------------------------------------------------------------------------
出 版 社:Cold Region Science and Technology  
发表时间:2003  
台  站:鼎湖山森林生态系统定位研究站  
作  者:Liu Jingshi et al.  
点 击 率:509840
------------------------------------------------------------------------------------------
关 键 字(英文):Permafrost; Seasonally frozen ground; Air temperature; Precipitation; Unfrozen water; Discharge; Ground temperature; Active layer  
摘  要(英文):An abrupt warming of regional climate with a 1.3 jC rise in annual air temperature, coupled with an increase of 20–40% in precipitation, has occurred in the 1990s in the permafrost region of Northeast China. The geocryological and hydrological responses of a river basin at high latitude and at altitude with some permafrost are detected based on monthly climatological and streamflow data for 40 years (1958–1998). The variation in depth of the active layer is estimated by an empirical model using annual air temperature, its annual amplitude and the maximum thickness of snow cover.Significant responses of winter streamflows to a 2.4 jC of air temperature warming during December to February were observed. This was especially true for the greatest warming (4.4 jC in February during the 1990s) when runoff increased by 80% in February and by 100% in March from the prior. These responses are caused by a change in depth and temperature of the active layer ranging from 1.5 to 3.0 m in areas where the drainage of the unfrozen water can occur when the ground temperature rises above 0 jC from 0.8 jC in February and March. The depth of the seasonal frost has shrunk by about 30 cm and the active layer thickness increased by about 40 cm in permafrost in the 1990s because of the warmer climate. The hydrological response from winter streamflows in permafrost areas is more significant and quicker than that from the seasonal frost areas. The freezing and drainage of ground water at 2.0–3.0 m deep in March is very sensitive to the climatic warming.  
------------------------------------------------------------------------------------------
Hydrological and geocryological response of winter streamflow to climate warming in Northeast China.pdf
相关文章:
鼎湖山区域大气降水特征和物质元素输入对森林生态系统存在和发育的影响
广东鼎湖山马尾松年轮元素含量及其相关性研究
通过树木年轮δ13C重建大气CO2碳同位素比δa的可靠性探讨
南亚热带酸雨地区植物、土壤与地表水现状的研究
鼎湖山人工松林生态系统蒸散力及计算方法的比较
鼎湖山季风常绿阔叶林小气候特征分析
用灰色关联法分析森林生态系统植被状况对地表径流系数的影响
关于模拟和预测生态系统第一生产力对气候变化响应研究的一点思考
鹤山丘陵草坡的水文特征及水量平衡
鼎湖山三种植物群落土壤结构及其水文效应
相关文章分页:  共 70 页 696 条记录 9 3[1][2][3][4][5][6][7][8][9][10]4 :
中国生态系统研究网络 版权所有
| 网络介绍 | 联系方式 | 网站地图 |