首 页 网络介绍 CERN新闻 规章制度 在研项目 论文与出版物 学术动态 生态知识 人员招聘 人员组成 English
     机构介绍
     新闻栏目
     人员组成
     人员招聘
     在研项目
     论文与出版物


  论文与出版物
Hydrological and geocryological response of winter streamflow to climate warming in Northeast China
------------------------------------------------------------------------------------------
出 版 社:Cold Region Science and Technology  
发表时间:2003  
台  站:鼎湖山森林生态系统定位研究站  
作  者:Liu Jingshi et al.  
点 击 率:510149
------------------------------------------------------------------------------------------
关 键 字(英文):Permafrost; Seasonally frozen ground; Air temperature; Precipitation; Unfrozen water; Discharge; Ground temperature; Active layer  
摘  要(英文):An abrupt warming of regional climate with a 1.3 jC rise in annual air temperature, coupled with an increase of 20–40% in precipitation, has occurred in the 1990s in the permafrost region of Northeast China. The geocryological and hydrological responses of a river basin at high latitude and at altitude with some permafrost are detected based on monthly climatological and streamflow data for 40 years (1958–1998). The variation in depth of the active layer is estimated by an empirical model using annual air temperature, its annual amplitude and the maximum thickness of snow cover.Significant responses of winter streamflows to a 2.4 jC of air temperature warming during December to February were observed. This was especially true for the greatest warming (4.4 jC in February during the 1990s) when runoff increased by 80% in February and by 100% in March from the prior. These responses are caused by a change in depth and temperature of the active layer ranging from 1.5 to 3.0 m in areas where the drainage of the unfrozen water can occur when the ground temperature rises above 0 jC from 0.8 jC in February and March. The depth of the seasonal frost has shrunk by about 30 cm and the active layer thickness increased by about 40 cm in permafrost in the 1990s because of the warmer climate. The hydrological response from winter streamflows in permafrost areas is more significant and quicker than that from the seasonal frost areas. The freezing and drainage of ground water at 2.0–3.0 m deep in March is very sensitive to the climatic warming.  
------------------------------------------------------------------------------------------
Hydrological and geocryological response of winter streamflow to climate warming in Northeast China.pdf
相关文章:
割草对鼎湖山马尾松林土壤动物群落的影响
旅游干扰对鼎湖山自然保护区土壤动物群落的影响
南亚热带森林土壤生态系统的有机能量动态
森林凋落物分解研究
白蚁等昆虫对枯倒木的分解作用
鼎湖山季风常绿阔叶林各层次优势种热值研究
大气污染胁迫下9种植物幼苗叶片热值、C/N和灰分含量比较
鼎湖山针阔叶混交林土壤酸度与土壤养分的季节动态
鼎湖山地带性植被及其不同演替阶段水文学过程长期对比研究
鼎湖山季风常绿阔叶林水相沉积元素分布及其相关性研究
相关文章分页:  共 70 页 696 条记录 9 3[31][32][33][34][35][36][37][38][39][40]4 :
中国生态系统研究网络 版权所有
| 网络介绍 | 联系方式 | 网站地图 |