首 页 网络介绍 CERN新闻 规章制度 在研项目 论文与出版物 学术动态 生态知识 人员招聘 人员组成 English
     机构介绍
     新闻栏目
     人员组成
     人员招聘
     在研项目
     论文与出版物


  论文与出版物
Temperature and precipitation control of the spatial variation of terrestrial ecosystem carbon exchange in the Asian region
------------------------------------------------------------------------------------------
出 版 社:Agricultural and Forest Meteorology  
发表时间:2013  
台  站:鼎湖山森林生态系统定位研究站  
作  者:闫俊华(11)  
点 击 率:585279
------------------------------------------------------------------------------------------
关 键 字(英文):Terrestrial ecosystem,Spatial variation,Carbon exchange fluxes,Climate controlling factors,Carbon source/sink strength,Asian region  
摘  要(英文):Carbon exchange between terrestrial ecosystems and the atmosphere is one of the most important processes in the global carbon cycle. Understanding the spatial variation and controlling factors of carbon exchange fluxes is helpful for accurately predicting and evaluating the global carbon budget. In this study,we quantified the carbon exchange fluxes of different terrestrial ecosystems in the Asian region, and analyzed their spatial variation and controlling factors based on long-term observation data from ChinaFLUX (19 sites) and published data from AsiaFlux (37 sites) and 32 other sites in Asia. The results indicated that the majority of Asian terrestrial ecosystems are currently large carbon sinks. The average net ecosystem production (NEP) values were 325±187, 274±207, 236±260, 89±134gCm−2 yr−1 in cropland, forest,wetland and grassland ecosystems, respectively. The spatial variation of gross primary production (GPP) and ecosystem respiration (Re) were mainly controlled by the mean annual temperature (MAT) and the mean annual precipitation (MAP) in the Asian region. There was a clear linear relationship between GPP and MAT, and a strong sigmoid relationship between GPP and MAP. Re was exponentially related to MAT and linearly related to MAP. Interestingly, those response modes were consistent across different ecosystem types. The different responses of GPP and Re to MAT and MAP determined the spatial variation of NEP. The combined effects of MAT and MAP contributed 85%, 81% and 36% to the spatial variations of GPP, Re and NEP, respectively. Our findings confirmed that the spatial variation of carbon exchange fluxes was mainly controlled by climatic factors, which further strongly supports the use of the climate-driven theory in the Asian region.  
------------------------------------------------------------------------------------------
闫俊华11-2013-AFM-Temperature and precipitation control of the spatial variation of terrestrial ecosystem carbon exchange in the Asian region.pdf
相关文章:
C-14 Measurement of Forest Soils in Dinghushan Biosphere Reserve
Hydrological impacts of reafforestation with eucalyptus and indigenous species: a case study in Southern China
Radial Variation in Sap Flux Density as a Function of Sapwood Thickness in Two Eucalyptus (Eucalyptus urophylla S.T.Blake) Plantations
通过树木年轮C13重建大气 CO2浓度的可靠性探讨
鼎湖山自然保护区森林土壤14C测定及14C示踪初步研究
Response of Photosynthesis, Growth, Carbon Isotope Discrimination and Osmotic Tolerance of Rice to Elevated CO2
Responses of Chlorophyll Fluorescence and Carotenoids Biosynthesis to High Light Stress in Rice Seedling Leaves at Different Leaf Potiton
Daily changes in components of xanthophyll cycle and antioxidant systems in leaves of rice at different developing stage
水稻的光合作用、生长、碳同位素分辨作用及抗渗透胁迫性对CO2浓度增高的响应
光对4种木本植物叶片清除有机自由基能力的影响
相关文章分页:  共 70 页 696 条记录 9 3[11][12][13][14][15][16][17][18][19][20]4 :
中国生态系统研究网络 版权所有
| 网络介绍 | 联系方式 | 网站地图 |