首 页 网络介绍 CERN新闻 规章制度 在研项目 论文与出版物 学术动态 生态知识 人员招聘 人员组成 English
     机构介绍
     新闻栏目
     人员组成
     人员招聘
     在研项目
     论文与出版物


  论文与出版物
Seasonal and inter-annual variations in net ecosystem exchange of two old-growth forests in southern China
------------------------------------------------------------------------------------------
出 版 社:Agricultural and Forest Meteorology  
发表时间:2013  
台  站:鼎湖山森林生态系统定位研究站  
作  者:闫俊华等  
点 击 率:565771
------------------------------------------------------------------------------------------
关 键 字(英文):Old-growth forest,Net ecosystem exchange,Gross primary productivity,Ecosystem respiration,Seasonal variation,Inter-annual variation  
摘  要(英文):Old-growth forests can accumulate carbon. However, what controls the rate of net carbon accumulation in those old-growth forests is still poorly understood. Using eddy flux measurements from two old-growth evergreen broadleaf forests (subtropical forest and tropical forest) in southern China, we compared the seasonal and inter-annual variations in the carbon fluxes of those two forests and quantified the major drivers for these temporal variations. The measured flux data showed that the annual net carbon uptake of the subtropical forest was generally much larger than that for the tropical forest. The mean net ecosystem exchange (NEE) over 6 years was −397±94gCm−2 yr−1 for the subtropical forest and −166±49gCm−2 yr−1 for the tropical forest with different seasonal variations. The subtropical forest was a carbon sink for most months in a year, while the tropical forest was a carbon source in wet seasons (positive NEE) and a carbon sink in dry seasons (negative NEE). Both forests were stronger carbon sink in dry years, because of much larger reduction in ER than in wet years. At the seasonal scale, GPP in wet seasons was 37.1% higher than that for dry seasons in the subtropical forest, and was only 12.4% higher in the tropical forest. The amplitude of seasonal GPP variation in the tropical forest was much weaker than in the subtropical forest, but the amplitude of the seasonal variation in ER was much larger than in the subtropical forest. The seasonal variation in NEE was largely driven by the variation in monthly ER of the tropical forest, and by both seasonal variations in monthly GPP and ER of the subtropical forest.At inter-annual scale, annual NEE varied tightly with annual rainfall from year to year. Therefore annual rainfall was suggested a fundamental driver of annual carbon sequestration in the subtropical and tropical forests in southern China.  
------------------------------------------------------------------------------------------
闫俊华1-2013-AFM-Seasonal and inter-annual variations in net ecosystem exchange of two old-growth forests in southern China.pdf
相关文章:
鼎湖山苗圃和主要森林土壤CO_2排放和CH_4吸收对模拟N沉降的短期响应
模拟氮沉降对南亚热带两种乔木幼苗生物量及其分配的影响
渐危植物格木群落动态及其保护对策
鼎湖山森林群落多样性垂直分布格局的研究
南岭大顶山常绿阔叶林群落结构及其物种多样性
Litter decomposition and nitrogen mineralization of soils in subtropical
鼎湖山主要森林生态系统地表N2O 通量
Soil-atmospheric exchange of CO2, CH4, and N2O in three subtropical forest ecosystems in southern China
Estimates of soil respiration and net primary production of three forests at different succession stages in South China
Elevated co2 stimulates net accumulations of carbon and nitrogen in land ecosystems:A meta-analysis
相关文章分页:  共 70 页 696 条记录 9 3[31][32][33][34][35][36][37][38][39][40]4 :
中国生态系统研究网络 版权所有
| 网络介绍 | 联系方式 | 网站地图 |