首 页 网络介绍 CERN新闻 规章制度 在研项目 论文与出版物 学术动态 生态知识 人员招聘 人员组成 English
     机构介绍
     新闻栏目
     人员组成
     人员招聘
     在研项目
     论文与出版物


  论文与出版物
Fine root production, turnover, and decomposition in a fast-growth Eucalyptus urophylla plantation in southern China
------------------------------------------------------------------------------------------
出 版 社:J Soils Sediments  
发表时间:2013  
台  站:鼎湖山森林生态系统定位研究站  
作  者:徐伟强,刘菊秀等  
点 击 率:569330
------------------------------------------------------------------------------------------
关 键 字(英文):Decomposition constant (kvalue),Eucalyptus plantations,Fine roots,Litterbag settlement season,Root diameter class,Soil temperature  
摘  要(英文):Purpose A rapid increase of Eucalyptus plantation area in southern China has raised widespread attention in the field of ecology and forestry. It might be argued that fast-growth Eucalyptus would increase the consumption of resources and thus cause soil degradation. Fine root dynamics could provide insight into nutrient uptake or return. This study therefore focused on fine root production, turnover, and decomposition in a subtropical Eucalyptus urophylla plantation. Materials and methods Sequential coring method was used to estimate fine root production and turnover rate. Root decomposition rate and root nitrogen (N) and phosphorus (P) dynamics were determined using the litterbag method.In this study, roots were divided into three diameter classes: <1, 1–2, and 2–3 mm. We settled litterbags with all three different root diameter classes under the forest floor (0–10cm) in winter, spring, and summer. Results and discussion The total production of fine roots at diameter <2mm was 45.4gm−2 year−1, and its turnover rate was 0.58 year−1. The roots at diameter <1mm showed much greater production or turnover rate than those at diameter 1–2mm. The root mass loss from litterbag across the three diameter classes (<1, 1–2, and 2–3mm) was similar at the beginning period of 180 days, but significantly different later. The decomposition constant (kvalue) of roots estimated by exponential decay model decreased with increasing diameter class. In addition, the season of litterbag settlement also had effects on root mass loss. In root nutrient dynamics, the fractions of initial N immobilized increased with increasing diameter class. Root P at the three diameter classes showed a similar mineralization pattern. Conclusions Our studies on fine root production, turnover,and decomposition give some important insights into nutrient cycling between plant and soil in Eucalyptus plantations.Our results which show that fine roots had relatively low production and turnover rate partly explain the potential soil degradation under the short rotation systems. The variation of root dynamics among different diameter classes suggests that to accurately assess fine root roles, one should consider the effects of root diameter size.  
------------------------------------------------------------------------------------------
徐伟强-2013-J Soils Sediments-Fine root production, turnover, and decomposition in a fast-growth Eucalyptus urophylla plantation in southern China.pdf
相关文章:
曲江县养牛业初见成效
禾本科牧草植物的结构、生长特性及其生理学基础
林下层植物在退化马尾松林恢复初期养分循环中的作用
鼎湖山3种不同林型下的土壤酸度和养分含量变化差异及其季节动态特性
鼎湖山演替系列中代表性森林凋落物的研究
鼎湖山季风常绿阔叶林凋落物层化学性质的研究
虎门地区大气污染的植物学评价
曲江县养牛业及其发展前景
收割次数对四种牧草生物量积累的影响
鼎湖山厚壳桂群落演替过程的组成和结构动态
相关文章分页:  共 70 页 696 条记录 9 3[1][2][3][4][5][6][7][8][9][10]4 :
中国生态系统研究网络 版权所有
| 网络介绍 | 联系方式 | 网站地图 |