首 页 网络介绍 CERN新闻 规章制度 在研项目 论文与出版物 学术动态 生态知识 人员招聘 人员组成 English
     机构介绍
     新闻栏目
     人员组成
     人员招聘
     在研项目
     论文与出版物


  论文与出版物
Three-decade changes in chemical composition of precipitation in Guangzhou city, southern China:has precipitation recovered from acidification following sulphur dioxide emission control?
------------------------------------------------------------------------------------------
出 版 社:Tellus  
发表时间:2013  
台  站:鼎湖山森林生态系统定位研究站  
作  者:朱飞飞(3)  
点 击 率:609210
------------------------------------------------------------------------------------------
关 键 字(英文):chemical composition, precipitation, southern China, sulphur and nitrogen deposition, sulphur dioxide emission control  
摘  要(英文):We examined if precipitation had recovered from acidification in Guangzhou, the third biggest city in China,and if sulphur deposition in precipitation had decreased, and to what extent if yes, following abatement strategies in sulphur dioxide (SO2) emission and energy use implemented since 2001. SO2 emissions were decreasing steadily since 2001, but a marked recovery of precipitation acidity occurred only since 2005;precipitation pH values decreased from 4.65 in 2001 to 4.34 in 2005 and then increased to 5.08 in 2010, while in the same period acid rain (pHB5.6) frequency increased from 70% to 81% and then decreased to 48%. During this period, the change in pH value and sulphate concentration more reflected the patterns of SO2 emission at provincial and national scales than at the local scale, suggesting that precipitation chemical composition was largely controlled by the emissions of pollutants from surrounding areas of the study city.Since 2001, sulphate deposition in precipitation decreased significantly (by 40%) but nitrogen deposition remained unaltered. More importantly, the current sulphur (43 kg S ha-1 yr-1 as sulphate) and nitrogen depositions (35 kg N ha-1 yr-1 as ammonium plus nitrate in 2010) were still among the highest in China. These results highlight the fact that ambient sulphur and nitrogen deposition still pose a threat to the health of both terrestrial and aquatic ecosystems. Precipitation may become more acidified in the future because the deposition of alkaline dusts containing calcium is also likely to decrease with stricter SO2 emission control policy and reduced construction activities. Additionally, we recommend that a reduction of emissions of nitrogen and chlorine bearing pollutants is urgently required for complete control on acid deposition.  
------------------------------------------------------------------------------------------
朱飞飞3-2013-Tellus-Three-decade changes in chemical composition of precipitation in Guangzhou city, southern Chinahas precipitation recovered from acidification following sulphur dioxide emission.pdf
相关文章:
C-14 Measurement of Forest Soils in Dinghushan Biosphere Reserve
Hydrological impacts of reafforestation with eucalyptus and indigenous species: a case study in Southern China
Radial Variation in Sap Flux Density as a Function of Sapwood Thickness in Two Eucalyptus (Eucalyptus urophylla S.T.Blake) Plantations
通过树木年轮C13重建大气 CO2浓度的可靠性探讨
鼎湖山自然保护区森林土壤14C测定及14C示踪初步研究
Response of Photosynthesis, Growth, Carbon Isotope Discrimination and Osmotic Tolerance of Rice to Elevated CO2
Responses of Chlorophyll Fluorescence and Carotenoids Biosynthesis to High Light Stress in Rice Seedling Leaves at Different Leaf Potiton
Daily changes in components of xanthophyll cycle and antioxidant systems in leaves of rice at different developing stage
水稻的光合作用、生长、碳同位素分辨作用及抗渗透胁迫性对CO2浓度增高的响应
光对4种木本植物叶片清除有机自由基能力的影响
相关文章分页:  共 70 页 696 条记录 9 3[11][12][13][14][15][16][17][18][19][20]4 :
中国生态系统研究网络 版权所有
| 网络介绍 | 联系方式 | 网站地图 |