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ABSTRACT

Scant information is available on how soil phosphorus (P) availability responds to atmospheric nitrogen (N) deposition, especially in the
tropical zones. This study examined the effect of N addition on soil P availability, and compared this effect between forest sites of con-
trasting land-use history. Effects of N addition on soil properties, litterfall production, P release from decomposing litter, and soil P
availability were studied in a disturbed (reforested pine forest with previous understory vegetation and litter harvesting) and a rehabili-
tated (reforested mixed pine/broadleaf forest with no understory vegetation and litter harvesting) tropical forest in southern China.
Experimental N-treatments (above ambient) were the following: Control (no N addition), N50 (50 kg N ha~' yr "), and N100
(100 kg N ha ™! §7r71). Results indicated that N addition significantly decreased soil P availability in the disturbed forest. In the rehabili-
tated forest, however, soil P availability was significantly increased by N addition. Decreases in soil P availability may be correlated with
decreases in rates of P release from decomposing litter in the N-treated plots, whereas the increase in soil P availability was correlated
with an increase in litterfall production. Our results suggest that response of soil P availability to N deposition in the reforested tropical
forests in southern China may vary greatly with temporal changes in tree species composition and soil nutrient status, caused by differ-
ent land-use practices.

Abstract in Chinese is available in the online version of this article.
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forests.

NITROGEN (N) DEPOSITION HAS GREATLY ALTERED N CYCLING at
regional and global scales (Galloway ez a/. 2004). Elevated N depo-
sition has threatened ecosystem health and services through acidifi-
cation and eutrophication (Sala e 2/ 2000, Matson e al. 2002,
Bobbink ez 4/ 2010, Lu ¢# /. 2010) and increased susceptibility to
secondary stress (Gilliam 2006, Bobbink ez 4/ 2010). Excess N can
also interfere with the ability of trees to resorb nutrients that affect
plant fitness (May ez /. 2005). Meanwhile, because of the tight stoi-
chiometry of macronutrients (e.g., C:N:P ratios) and phosphorus
(P) limitation that is common in terrestrial ecosystems (Reiners
1986, McGroddy e# al. 2004a, Vitousek ez a/. 2010), N deposition
may further creates imbalances in energy flow and nutrient cycling
(Reich & Oleksyn 2004, McGroddy et al. 2004a, Pregitzer et al.
2008, Zak e al. 2008). Considering that P is an essential limiting
macronutrient in terrestrial ecosystems (Schlesinger 1997, Vitousek
et al. 2010), studies on soil P availability under varying levels of N
deposition will further our understanding on how N deposition
affects ecosystem health and services.

Many reports suggest that N deposition significantly increases
the availability of soil N (Vesterdal & Raulund-Rasmussen
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2002, Lu et al. 2009, Cotre et al. 2010), increases aboveground
catbon sequestration (Thomas ef o/ 2010) and belowground
catbon stock (Cusack ef @/ 2011), and induces P limitation
(Gradowski & Thomas 2006, Gress ¢ al. 2007, Braun ez al. 2010,
Vitousek e al. 2010) in forest ecosystems. Little information is
available on how soil P availability tresponds to atmospheric N
deposition, especially in tropical regions (Vesterdal & Raulund-
Rasmussen 2002, Mo ¢# al. 2007, Braun ez al. 2010).

In tropical forest ecosystems, P is generally believed to be
the most limiting element (Vitousek 1984), and P availability plays
an important role in net primary productivity (NPP), organic
matter decomposition, and soil carbon sequestration (Matson
et al. 1999, Cleveland & Townsend 20006). Moreover, soil carbon
sequestration under elevated CO, may be constrained by P avail-
ability in tropical forest ecosystems; thus, anthropogenic N depo-
sition can further diminish carbon sequestration (Van Groenigen
et al. 2006, Kaspati ef al. 2008). Although this is generally true
for primary forests, it is less clear for secondary tropical forests.
For example, evidence suggests that eatly successional forests fol-
lowing agricultural abandonment on highly weathered lowland
tropical soils exhibit conservative N-cycling properties similar to
(Davidson ¢t al.  2007).
Indeed, further examination of N fertilizer studies has also sug-

their temperate forest counterparts

gested that N limitation of NPP in terrestrial ecosystems is glob-
ally distributed (Lebauer & Treseder 2008).
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In tropical soils, available P mainly originates from weathering
of parent material and biologic processes. Once weathering ceases
to provide significant inputs of P, vegetation largely depends on the
recycling of P through biologic processes, such as litter decomposi-
ton (Walker & Syers 1976, Tiessen ¢ al. 1994, McGroddy ¢ al.
2004b). The addition of exogenous N to the soil-litter subsystem
has shown variable effects on the rate of litter decomposition in
forest ecosystems (Vitousek 1998, Knorr ez al 2005, Mo et al.
2006), and thus, potentially, the availability of phosphorus.

Rates of N deposition to Chinese tropical and subtropical
forests have increased in recent years, largely due to increased
agriculture and industrialization. Liu ef @/ (2011) reported that
emissions of reactive N increased from 1980 (7 Tg N yrfl) to
2005 (20 Tg N yr~ ) in China. Lii & Tian (2007) concluded that
total N deposition rates are highest (65 kg N ha ' yr™ ") in
~1

>

south-central China, with a mean rate of 19 kg N ha ' yr
which is higher than that for most of North American and
Europe, where N-mediated threats to forest ecosystem health
have been suggested (Bobbink ez a/. 2010; Percy & Ferretti 2004).

Many primary forests in China have been deforested during
the past several centuries (Wang e a/. 1982, Liu e a/ 2000, Li
2004), with only two percent of the nation’s total forest resources
remaining intact (Liu e a/. 2000). Attempts to reverse land degra-
dation have been made in many subtropical and tropical regions
of China, with extensive areas having been reforested with native
pine species (e.g., Pinus massoniana Lamb) to prevent further degra-
dation of the landscape. Although cutting of the trees is usually
prohibited, harvesting of understory vegetation and litter is often
allowed to satisfy fuel needs of local people (Brown e al 1995,
Mo e al. 1995, 2003). These reforested stands are often referred
to as disturbed forests (having experienced understory vegetation
and litter removal) and rebabilitated forests (reforested without such
removal) Mo ¢ al. 2003). Reforested areas cover more than half
of the total forested regions of subtropical and tropical China
Brown ez al. 1995, Mo et al. 2003, SFA 2007). Despite this, the
interactive effects of N deposition and land-use changes on ele-
ment cycling are poorly known (Mo ez a/. 2003, 2007).

The objective of our present study was to examine the
effects of N addition on soil P availability and to compare these
effects between reforested sites of different land-use history. We
have previously reported that N addition significantly suppressed
release rate of P from decomposing litter in the disturbed and
the rehabilitated forests in southern China during the first 24 mo
(July 2003 to June 2005) of a N fertilization experiment (Mo ez a/.
2007), suggesting that soil P availability may decrease with
increased N deposition. Accordingly, we hypothesize that soil P
availability in both distutbed and tehabilitated forests would be
reduced by continued N addition.

METHODS

Srre DESCRIPTION.—This study was conducted in the Dinghushan
Biosphere Reserve, which is central Guangdong Province in
southern China (112°10" E, 23°10" N), and occupies an area of
approximately 1200 ha. Three forest types occur in the reserve:
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monsoon evergreen broadleaf forest (mature forest), mixed pine/
broadleaf forest (rehabilitated forest), and pine forest (disturbed
forest). The reserve has a monsoon climate, and is located in a
tropical moist forest life zone (sensn Holdridge 1967). The mean
annual rainfall of 1927 mm has a distinct seasonal pattern, with
75 percent falling from March to August, and only 6 percent
from December to February (Huang & Fan 1982). Annual aver-
age relative humidity is 80 percent. Mean annual temperature is
21.0°C, with an average temperature of the coldest month (Janu-
ary) and hottest (July) of 12.6°C and 28.0°C, respectively (Huang
& Fan 1982). This region has been experiencing high ambient N
deposition (21-38 kg N ha™' yr ' as inorganic N in bulk precip-
itation), at least since 1990s (Huang ef a/. 1994, Zhou & Yan
2001, Mo ez al. 2002, Fang et al. 2008). Fang et al. (2008) est-
mated wet deposition N as 34 and 32 kg N ha 'y~ ! in 2004
and 2005, respectively.

We selected two types of forest for this study: a rehabilitated
forest and a disturbed forest (Mo ef al. 2006, Lu et al. 2011). The
two forest types are about 4 km from each other, both originat-
ing from pine planting following clear-cutting in the 1930s, with
sites being heavily eroded and degraded (Wang e 2/ 1982, Mo
et al. 1995, 2003). In addition, the disturbed forest was under
continuous land-use pressure (particularly harvesting of under-
story vegetation and litter) from 1930 to 1998. As a result, the
tree layer remained dominated by P. massoniana (Brown et al.
1995, Mo et al. 1995, 2003). In contrast, lack of such harvesting
in the rehabilitated forest has allowed colonization from natural
dispersal of regional broadleaf species (mainly Schima superba
Chardn. & Champ), and has changed overstory composition. As
a result, the tree layer has become dominated by P. massoniana
and some broadleaf species (Mo e a/. 2003, 2007).

We established our research sites in both forests in 2002.
A pretreatment assessment conducted in June 2003 revealed that
the major tree canopy species of the rehabilitated forest were
P. massoniana and S. superba; disturbed forest was dominated by
P. massoniana (Table 1). The soils in both types of forest are oxi-
sols with variable depths (Brown ez a/ 1995, Mo et al. 2003).

EXPERIMENTAL TREATMENTS.—Nitrogen addition experiments were
initiated in both forest types in July 2003. Three replicates of each
of three N addition treatments were established in both rehabili-
tated and disturbed forests: Control (without N added), N50
(50 kg N ha™ " yr "), and N100 (100 kg N ha™" yr™ ). A total of
18, 20-m x 20-m plots were established, nine in each of rehabili-
tated and disturbed forests, with each plot surrounded by a > 10-
m wide buffer strip. Field plots and treatments were laid out ran-
domly. Ammonium nitrate (NH4NOs3) solution was sprayed
monthly by hand onto the forest floor as 12 equal applications. In
each plot, fertilizer was weighed, mixed with 20 L of water, and
applied below the canopy using a backpack sprayer. Two passes
were made across each plot to ensure an even distribution of fertil-
izer. The Control plots received 20 L water with no N added.

FiELD sAMPLING.—In both disturbed and rehabilitated forests,
three litterfall traps (0.5 m x 0.5 m) with a mesh size of 1 mm
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TABLE 1. Indices of the tree layer in a disturbed and a rebabilitated tropical forest at
Dinghushan Biosphere Reserve in southern China. The survey was conducted
in 2003, and the area was 1800 n7° for each forest. All trees were recorded
when the dbb (diameter at breast height) > 2.5 cm.

Basal Relative

Density Mean (m) Mean area area
Species (stems/ha) height (cm) dbh  (m®/ha) (%) basal
Disturbed forest
Pinns massoniana 354 7.4 17.7 10.5 95.3
Schima superba 38 4.5 4.0 0.1 0.4
Other plants 188 3.9 3.9 0.5 4.2
Total 580 11.1 100.0
Rehabilitated forest
Schima superba 1158 4.6 6.4 5.5 54.3
Pinus massoniana 96 8.0 21.9 4.1 40.4
Other plants 150 3.9 4.4 0.5 5.3
Total 1404 10.1 100.0

Note: Data are cited from Lu ef a/. (2011). [This table was corrected after

publication.]

were placed randomly in each plot (nine litter traps per treat-
ment) about 0.5 m above the ground surface at the start of the
study (27 August 2003). These traps were emptied once every
month during the entire study period from September 2003 to
August 2007.

To quantify responses of litterfall decomposition rates to N
addition in both forests, we selected identical litter for all treat-
ments: S. superba and Castanopsis chinensis (Sprengel) Hance, which
are the main native tree species and contribute most of the leaf
litter in forest ecosystems of Dinghushan Biosphere Reserve (Mo
et al. 2006, Fang e al. 2007). Fresh leaf litter was collected using
litter traps and nylon mesh, which were laid on the forest floor
under the trees in the study sites during May and June 2005. All
litter materials were air-dried to a constant weight and mixed
before filling the mesh bags. Litter bags were made of
25 x 25 cm polyvinyl plastic with 0.5 mm mesh size at the bot-
tom and 2 mm mesh size at the top (Fang ez a/. 2007). Six subs-
amples (about 12.0 g per subsample) from each kind of litter
type were analyzed for initial litter chemistry (total C, N, and P
concentrations). There was no significant difference between litter
types in initial litter chemistry (Table 2).

Bags were filled with 12.0 g air-dried mass, and only one lit-
ter type was put in each bag. On 18 October 2005 (approx.

26 mo after first N-treatment), these litter bags were evenly dis-
tributed among each plot of the two forests. Litter bags were ran-
domly retrieved from each string at 3-mo intervals. Two litter
bags of each species were collected from each plot at each
sampling time (Fang ez a/. 2007).

Mineral soils (0-10 cm) were sampled in April 2007 (after
46 mo of continuous N-treatment) to determine soil available P.
In each plot, four bulked samples, each the composite of five
randomly distributed cored (2.5 cm diam) soil samples, were col-
lected (a total of 72 samples in two forests).

LABORATORY PROCEDURES.—For monthly collections from litterfall
traps, we dried each litter component to a constant weight at 80°C.
Litter collected from litter bags was cleaned of ingrown roots and
other contaminants and oven-dried in paper bags first to a constant
weight at 45°C. After drying, the content of each bag was weighed
individually. Subsamples of dried litter was grounded and analyzed
for P concentration. In addition, initial litter C, N, and P concentra-
tions of the selected tree species were also measured: carbon was
measured using dichromate oxidation before titration with Fe®"
solution, and N and P were analyzed colorimetrically after digestion
(Dong 1996).

Soils were sieved (2 mm) to remove plant residues (including
roots), and mixed thoroughly by hand. Soil-available P was detet-
mined by adding an acid-ammonium fluoride extracting solution
(0.025 mol . HCI + 0.03 mol ™' NH,F) (Bray & Kurtz
1945). To explore possible mechanisms for changes of soil P, we
also determined soil pH (soil: water = 1: 2.5), exchangeable Al and
Fe, and soil organic carbon (SOC). Soil Al and Fe were extracted
with 1 mol L™! KCl (10:1, solution: soil), and were determined
using ICP optical emission spectrometer (Waltham, MA, US.A.).
SOC was measured using dichromate oxidation before titration
with Fe** solution (Liu ez al. 1996). Subsamples of all materials (soil
or litter) were dried at 105°C to a constant weight (at least 24 hr),
and all results are reported on an oven-dry weight basis.

Data ANALYsEs—Repeated measures analysis of variance (ANO-
VA) with Tukey’s honest significant difference (Tukey’s HSD) test
was performed to examine the overall effects of N addition on
the litterfall production of each component among treatments for
the study period from September 2003 to August 2007 in each
type of the forests. This analysis also examined overall effects of
N addition on the P content of decomposing litter (values of
Xt/Xo) among treatments for the study petiod from October
2005 to September 2006 in two forests, respectively. Here, Xo is
the initial mass (g/bag) and X7 is the mass remaining (g/bag) at

TABLE 2. Initial litter chemistry of the selected tree species in two tropical forests in southern China.

Species/litter type C(mgg " N (mg g ") P (mg g ") C/N c/P N/P
Castanapsis chinensis 434(7)" 15.1(0.1)* 0.79(0.01)* 28.9(0.3)" 551(10)° 19.100.3)"
Schima superba 445(8)" 14.8(0.3)" 0.56(0.01)* 30.2(0.9)" 802(20)" 26.6(0.8)"

Note: Values are means with 1 SE in parentheses, N = 6; Within a single column in a given species sharing the same letter are not significant different at

P < 0.05 level. The element ratios are given by mass:mass.



time t (October 2005 to September 2006). Litter P content was
calculated by multiplying P concentration by mass remaining
(Fang et al. 2007, Mo et al. 2007). The exponential model (Xo/
Xt=¢e ™, Olson 1963) was fit to the data using least squares
regression of the natural logarithm of mean litter P fraction
remaining (Kuperman 1999, Mo ez a/. 2006), where ‘e’ is the base
of natural logarithm, and kK’ is the litter P decomposition coeffi-
cient. We used independent sample ~tests to determine differ-
ences in soil P availability between the control plots of two
forests, and differences in initial litter chemistry between the
selected tree species. In addition, we conducted the planned
contrast analysis to test differences between control plots and
N-treatment plots. All statistical analyses were conducted using
SPSS 13.0 (SPPS, Chicago, 111, Illinois, U.S.A.) for Windows.

The statistical design of this study includes simple pseudore-
plication, a common characteristic whole stand-level forest eco-
system studies, with each forest representing an experimental
condition with a sample size of one (Hutlbert 1984); thus, our
data should be interpreted with that in mind. It is our contention,
however, that any effects we report are related to site history,
rather than pre-existing differences among stands, given the close
similarities among watersheds in several ‘site’ variables such as
soil texture, soil organic matter, and extractable nutrients (Lu
et al. 2011).

RESULTS

SoIL RESPONSE TO N ADDITION—Available soil P of the Control
plots was significantly higher in the disturbed forest
(0.43 + 0.04 mg kg~ ' soil) than that in the rehabilitated forest
(0.25 £ 0.02 mg kg~ soil) (Fi4, 6 = 6.04, F value with degrees of
freedom and number of data, respectively, the same below;
P =0.001). Effects of N addition on soil P availability varied
depending on the rates of N addition and forest types (Fig. 1). In
the disturbed forest, both N-treatments significantly decreased soil
available P (P = 0.049 and 0.035 in the N50 and N100 plots,
respectively). In contrast, soil available P increased with increasing
rate of N addition in the rehabilitated forest, a difference that was
significant between the Control and the N100 plots (P = 0.001).
Nitrogen addition did not significantly affect (P > 0.05) soil
pH, soil SOC, or extractable Al and Fe in either forest (Table 3).
Further analysis showed that there was no significant correlation
between soil available P and any of the above variables of soil
properties (data not shown).
PHOSPHORUS RELEASE FROM DECOMPOSING LITTER UNDER N
ADDITION.—Temporal patterns of P content in decomposing litter
were similar, decreasing exponentially with time in both forests
and across all treatments (Table 4; Fig 2). In the disturbed for-
est, rate of litter P loss decreased with increasing N-treatment
levels for both types of litter. Litter P decomposition coefficients
(k) were in the order: Control (0.51) > N50 (0.35) > N100 (0.34)
for S. superba, and Control (0.79) > N50 (0.68) > N100 (0.64)
for C. chinensis (Table 4). The difference between Control and
N50/N100 plots was significant for S. superba (Fpp, ¢ = 25.6,
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FIGURE 1. Effects of N addition on soil P availability in a disturbed and a
rehabilitated tropical forest in southern China. Bars indicate +1 SE. Mean val-
ues sharing the same letter are not significantly different among treatments at
P < 0.05 within a forest (IN = 3). Mineral soils (0 ~ 10 cm) were sampled in
April 2007 (after 46 mo of continuous N*-treatment). Monthly applications
of NH4NOj3 began in July 2003.

TABLE 3. Effects of N addition on soil pH, SOC, and extractable Al and Fe in the
disturbed and  rehabilitated forests. Data indicate means with S.E. in
parenthesis. Mineral soils (0 ~ 10 cm) were sampled in April 2007 (after

46 mo of continnons N-treatment).

N-treatments pH Al (mg/kg) Fe (mg/kg) SOC (g/kg)
Disturbed forest

Control 4000.03)  33836(1.37)  1219(1.85  23.63(3.86)
N50 3.95(0.02) 381.93(30.02) 15.84(1.57) 24.60(0.22)
N100 3.97(0.01) 349.60(36.19) 11.67(1.61) 24.64(0.21)
Rehabilitated forest

Control 392(003) 395382305 1651277  19.70(1.51)
N50 388(0.02)  400.60351) 1673082  20.28(3.10)
N100 3.86(0.03) 382.00(39.50) 17.90(0.35) 21.85(1.96)

P =0.001), but not for C. chinensis (Fp, ¢ = 2.8, P= 0.141)
(Table 4). The effect of N addition on litter P loss, however,
depended on the length of litter exposure and the litter type (Fig,
48y = 2.3 for the interaction between time*litter type*treatment,
P = 0.034). After the first 6 mo, there was no significant differ-
ence between treatments for S. superba, but a significant differ-
ence was found between treatments in the remaining sampling
dates (Fjg, 24 = 13.9 for the interaction between time*treatment,
P < 0.001) (Fig. 2A). In contrast, a significant difference between
treatments was found only on the third sampling date for C. chin-
ensis (Fjs, 24y = 4.1 for the interaction between time*treatment,
P =0.003) (Fig. 2B). Repeated measures ANOVA showed that
both rates of N addition significantly reduced the loss of P rela-
tive to the Control plots over the entite decomposition period
for S. superba (Fjo, ¢y = 27.8, P = 0.001), but not significant for
C. chinensis (Fz, ¢ = 1.7, P = 0.265).

In the rehabilitated forest, there was no significant difference
in P content of decomposing litter between treatments in any
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TABLE 4. Litter P decomposition (loss) coefficients (&) for the selected tree species in two reforested tropical forests in southern China.

Control N50 N100
Forest type/litter type k (yr ) s P k(e ) r2 P k (yr ) e P
Disturbed
Schima superba 051002  097(0.01)  0.003(0.001)  0350.00°  0960.00)  0.0040.001)  0340.03°  0.870.02)  0.022(0.004)
Castanapsis chinensis 079002 0.960.00)  0.003(0.000)  0.680.08"  0.970.01)  0.0030.002)  0.640.02°"  0.990.01)  0.001(0.001)
Rehabilitated
Schima superba 0.500.08*  0.910.03)  00130.005 0550067  0940.02)  0.0070.002)  0.590.03*  096(0.01)  0.004(0.001)
Castanopsis chinensis 0.700.05"  0.89(0.06)  0.027(0.020)  0.690.04"  094(0.02)  0.0080.004)  0.750.04°"  0.980.01)  0.001(0.001)

Note: Values are means with 1 SE in parentheses, N = 3; Decomposition coefficients (k), coefficients of determination (%), and P-values are based on a single

negative exponential model; Different letter within a single column indicate significant difference at P < 0.01.

Disturbed forest

>

Fraction of initial P

Fraction of initial P

0.4 :
0 3 6 9 12

Rehabilitated forest

0.4

—<— Control —l— NS0 —A—N100

Time (months)

FIGURE 2. Changes in P content of decomposing litter in a disturbed and a rehabilitated tropical forest in southern China from October 2005 to September

2006. Bars indicate 1 SE. Asterisk (¥) indicates significant difference between Control plots and N-treatment at P < 0.05 level using planned contrast analysis

(N = 3).

sampling dates and any litter type (Fig. 2C-D). The interaction
between time and treatment was not significant in P loss for both
types of litter (Fis 24 = 1.7 for S. superba, P = 0.259; and Fig
o4y = 0.4 for C. chinensis, P = 0.665). As a result, repeated mea-
sures ANOVA showed that N addition had no significant effect

on P content of the decomposing litter for both types of litter

over the entire decomposition period (Fp ¢ = 0.7 for S. superba,
P =0541; Fy, o = 1.7 for C. chinensis, P= 0.253; Fig. 2C-D).
This is also confirmed by comparison of litter P loss coefficients

(Table 4).



RESPONSE OF LITTERFALL PRODUCTION TO N ADDITION—Total litter
fall varied seasonally, across years, and between forests over the
4-yr petiod (Fig. 3). Mean monthly litterfall in the Control plots
was higher in the growing season (April-September) than that in
the winter (December—February) in both forests. Contribution of
leaf litter to total litter was about 75 and 80 percent in the
disturbed and rehabilitated forests, respectively, during the study
petiod (data not shown).

Repeated measures ANOVA revealed no significant effects
of N additions on total litterfall production in the disturbed for-
est during the study period (F, ¢ = 3.2, P = 0.112). In the reha-
bilitated forest, N addition increased total litter
production, which was significantly (Fz, ¢ = 7.7, P = 0.022)
higher in the N-treatment plots than that in the Control plots for
the last 2 yr of the experiment (Fig. 3).

however,
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DISCUSSION

Our results demonstrate that N addition significantly altered
availability of soil P in two forests. Based on evidence published
in the literature, several mechanisms are possible in explaining
this response: (1) changes in soil pH, subsequently altering geo-
chemical equilibrium on sorption and precipitation of P with Al
and Fe (Mccormick & Borden 1972, Sherman e a/. 2006, Weand
et al. 2010); (2) changes in the production of low molecular-
weight organic acids that would affect the release of inorganic P
associated with Al and Fe (Zou et a/. 1995, Singh & Amberger
1998, Harrold & Tabatabai 2006); (3) changes in rates of litterfall
and/or decomposition (Zou et al. 1995, Mo et al. 2007);
(4) changes in microbial immobilization of solution P (Zou ¢ al.
1995); and (5) changes in quality and quantity of organic inputs

A 200
Disturbed forest
&
£ 150
&0
=
< 100
D
=
E 50
=
0 L L
v o - » 9
§ ¥ 88 %% %
3 3 g g ® g
B 200
Rehabilitated forest
—
o
= 150 -
N
&
St
D
E
E
=1

so-ung

7 - w —
g ¥ 2 g 2 ¥ =2 =
$ 2 5 5§ 3§ F 8
s & L & o & L &
] wn = N N (=) 3 |

&
Yy v

0 S Y I B | L1
¥ 9 2 ¥ ¥ 9 2 ¢ o2 9 2 S P gz <
T 5 8§ % 2 F § % 8 8B 2 3 % FE G
1 1 1 1
S 8 ¢ R 2R g % & % g &8 8 8 585 S
Month/Year
—o— Control —=—N50 —4—N100

FIGURE 3. Monthly patterns of total litterfall production in a disturbed and a rehabilitated tropical forest in southern China from September 2003 to August

2007. Bars indicate £ 1 SE. Asterisk (¥) indicates significant difference between Control plots and N-treatment at P < 0.05 level using planned contrast analysis

(N = 3).
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(Zou et al. 1995, Weand et al. 2010). In addition, increased N
supply may affect mycorrhizal association and phosphatase activ-
ity, which play a very important role in P availability and uptake
by forest trees (Olander & Vitousek 2000, Avis e/ al. 2003, Braun
et al. 2010, Fujita ez al. 2010, Weand ez a/. 2010). Among these,
the first is mostly accepted, especially in the acidified ecosystems;
however, it is not likely to be operating in our study, considering
that soil pH did not vary among N-treatments (Table 3).

Data support our hypothesis that soil P availability in the
disturbed forest may be reduced by continued N addition, similar
to several other studies, showing that N addition could directly
decrease the availability and plant uptake of P (Emmet ef ol
1995, Gundersen 1998, Matson e 2. 1999. Gradowski and
Thomas (2006) described two mechanisms governing this change.
The geochemical mechanism suggests that soil acidification induced
by N deposition can result in increased P fixation by Fe and Al
hydrous oxides, which might substantially diminish the availability
of phosphate. The bivlogical mechanism proposes that significant
accumulation of soil organic matter affected by N deposition may
reduce pools of inorganic P by promoting conversion to organic
forms of P. Our results suggest that neither mechanism is operat-
ing at these sites. In the disturbed forest, 46 mo of continuous N
addition has failed to significantly affect soil pH, extractable Al
and Fe concentrations, and soil organic carbon content (Table 3).

Results for the rehabilitated forest, however, contradict our
original hypothesis, with soil P availability increasing in response
to N-treatments. To our knowledge, this finding is different from
any other studies (eg, Gradowski & Thomas 20006), although
some fertilization experiments have demonstrated that adding N
could increase the P cycling rates by increasing extracellular phos-
phatase activity and releasing phosphate from soil organic matter
(Olander & Vitousek 2000, Treseder & Vitousek 2001, Gress
et al. 2007). In this forest, no significant effects of N addition on
soil acidification process and soil organic matter content were
found (Table 3). Results of published studies do not offer a satis-
factory explanation for changes of soil available P in both the
disturbed and rehabilitated forests.

As discussed, recycling of P through biologic processes
could be one dominant way to supply soil available P (Walker &
Syers 1976, Tiessen e al 1994, and McGroddy e al. 2004b).
Although there have been many studies on the response of litter
decomposition to N addition (Knorr e# a/. 2005, Mo et al. 20006),
information regarding the response of litterfall production to
increased N deposition in forest ecosystems is more limited
(Chappell e al. 1999, Magill et al. 2004, Kaspari et al. 2008,
Pregitzer ez al. 2008, Sheppard e al. 2008). Studies such as these
are less common in tropical forests. Furthermore, no studies have
explored possible relationships between nutrient release from
decomposing litter and soil nutrient status with elevated N depo-
siton. Hence, we hypothesize that both responses of litter
decomposition rates and litter production to N addition may co-
dominate the dynamics of soil available P in this study.

After the initial 26 mo of continuous N fertilization, further
N addition (October 2005 to September 2006) significantly
reduced P loss from decomposing litter in the disturbed forest.

These results are consistent with our previous study reporting
that N addition significantly suppressed release rate of P from
decomposing litter of P. massoniana in the disturbed forest in the
first 24-mo (July 2003 to June 2005) of this N fertilization experi-
ment (Mo ¢ al. 2007), and similar to other studies in tropical for-
ests reporting that fertilization can induce microbial nutrient
retention within decomposing litter in nutrient-poor systems
(McGroddy ef al. 2004b, Cleveland ef a/. 2006). Hence, an
important source of available P could be greatly reduced by
inhibiting litter P release from decomposing litter. As above-
ground litter production was equivalent between the Control
plots and N-treatment plots, slower rates of P release from
decomposing litter probably decreased return of P to soil, thus
decreasing soil available P.

In the rehabilitated forest, further N addition (October 2005
to September 2006) had no significant effect on loss of P from
decomposing litter, although the previous results of the first
24-mo (July 2003 to June 2005) in this N fertilization experiment
showed that N addition significantly suppressed release rate of P
from decomposing litter of P. massoniana relative to the controls
(Mo et al. 2007). Ribeiro et al. (2002) also found that N addition
stimulated release of P during litter decomposition. Considering
both the use of identical litter from the decomposition experi-
ment and the N-limited status of both disturbed and rehabilitated
forests (Mo et al. 2000), attenuation of suppressing effects on lit-
ter P release may contribute to the increased soil available P, as
microbes typically immobilize P from soil solution during decom-
position in a P-poor system (McGroddy e al. 2004b, Olander &
Vitousek 2004, Cleveland ez a/. 2000).

Under continual N addition, carbon and P may become a
limiting factor for litter decomposition in both the disturbed and
rehabilitated forests. It has been suggested that chronic N addi-
tion to N-limited forests soil will initially stimulate soil microbial
activity, but over time, would result in a carbon-limited state after
microbial demand for N was satisfied (Aber e 2/ 1998), with
fresh materials decomposing faster than older materials (Berg &
Soderstrom 1979). We have shown that N addition significantly
increased the production of litterfall in the rehabilitated forest,
eg., at the third (September 2005 to August 2006) and fourth
(September 2006 to August 2007) year of the experiment, but
not in the disturbed forest (Fig. 3). These results indicate that
the amount of substrate resupplied by litterfall in the N-treated
plots is larger in the rehabilitated forest than in the disturbed for-
est under the same rate of N addition, suggesting that more cat-
bon and P are available for soil microbial activity in the
rehabilitated forest. Although N addition had no effect on the
loss of P from decomposing litter in the rehabilitated forest,
higher production of total litterfall probably facilitated soil P
accumulation.

Given the central role of litter production and decomposi-
tion in determining the response of soil available P to N addition,
their contrasting response patterns to N addition in the disturbed
versus rehabilitated forests may have arisen from changes in tree
species composition and soil nutrient status, brought about by
different land-use practices. As mentioned, both forests originated



from man-made pine forests. In the rehabilitated forest, after
more than 70 yr of rehabilitation, establishment of regional
broadleaf species via natural dispersal has changed plant compo-
sition, which is dominated by P. massoniana and a few broadleaf
species (mainly S. superba) (Mo et al. 2003). The disturbed forest,
however, has been under nearly constant human pressure (gener-
ally the harvesting of understory and litter to satisfy fuel needs of
local people) from time of planting until the late 1990s (Wang
et al. 1982, Brown e al. 1995, Mo et al. 1995). These intensive,
ongoing removals in the disturbed forest resulted in minimal
remnant vegetation cover, minimized competitive interaction
among understory plants, and maintained overstory dominance
by P. massoniana by eliminating seedlings of potential dominant/
co-dominant species (Mo e a/. 1995, 2003, Lu ez al. 2011). Pres-
ently, the disturbed forest is dominated by pines, representing
> 95 percent of total basal area (Table 1). In contrast, the reha-
bilitated forest was co-dominated by pines and broadleaf trees, 40
and 60 percent relative basal area, respectively (Table 1).

Different forest land-use practices have also led to differ-
ences in soil nutrient status. Previous work showed that both for-
ests are still N-limited because of previous deforestation activities
that led to substantial loss of soil N (Mo ez a/ 2003, 2006). Mo
et al. (1995) have shown, however, that harvest practices in the
disturbed forest removed about 44-73 percent of the total quan-
tity nutrients in the litter and understory production, an amount
that appeared to exceed most nutrient input from atmospheric
deposition. Mo e al. (2003) further suggested that successful
resupply of soil nutrients (¢, available soil N) in the rehabilitated
forests is possible, but not in the disturbed forest because of
continued harvest practices.

Contrasting plant species and nutrient status may lead to the
differences in plant growth and litterfall production between the
two forests. Lu ef al. (2011) suggested that low soil N and nutri-
ent status may hinder the growth of the trees in the disturbed
forest. The slow growth and low nutrient turnover rates of
P. massoniana, even at high N inputs, may result in no significant
changes of plant growth (eg, canopy closure) during the study
period (Lu e al. 2011). In the rehabilitated forest, successful res-
toration of soil nutrients on severely degraded lands might be
possible Mo ez al. 2003), and N addition was shown to increase
plant growth (Lu e a/. 2011). Hence, we hypothesize that the
increased litterfall could be the result of greater plant growth with
N addition in the rehabilitated forest.

In conclusion, our results suggest that continued N addition
can affect soil P availability in reforested regions of southern
China, but that this response may vary greatly with overstory tree
species composition and soil nutrient status as influenced by
land-use practices. In the disturbed forest, the significant decrease
of soil available P under N-treatments may be the result of the
significant suppressing of P release in the absence of change in
litter production. In contrast, the rehabilitated forest showed that
N addition significantly increased available soil P, an increase that
contributed to higher litter production and attenuation of sup-
pressing effects on release of litter P. This study provides new
insights on how elevated N deposition affects P availability, with
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potential applications toward ecosystem health and services.
Increases in available soil P in the rehabilitated forest have impli-
cations for the potential effectiveness of increased P in reducing
the symptoms of N saturation in the future. Our results were
evaluated for just one site of each forest type; thus, applications
of our results to other reforested forests in southern China
should be made with caution. Indeed, confirmation of our results
will require further investigation in other regions.
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