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a b s t r a c t

The analysis of the passive microwave radiance transfer equation certifies that there is a linear rela-
tionship between satellite-generated brightness temperatures (BT) and in situ observation temperature
and that land surface temperature (LST) is largely influenced by vegetation cover conditions. Microwave
polarization difference index (MPDI) is an effective indicator for characterizing the land surface vegeta-
tion cover density. Based on the analysis of LST models from AMSR-E BT with 6.9 GHz MPDI intervals at
0.04, 0.02 and 0.01, respectively, this paper developed a simplified LST regression model with MPDI-based
five land cover types, combining observation temperatures from 86 meteorological observation stations.
The study shows that smaller MPDI intervals can obtain higher accuracy of AMSR-E LST simulation, and
that the combination of HDF Explorer and ArcGIS software was useful for automatically processing the
pixel latitude, longitude and BT information from the AMSR-E HDF imagery files. The RMSE of the five LST
simulation algorithms is between 1.47 and 1.92 ◦C, with an average LST retrieval error of 0.91–1.30 ◦C.
Besides, only 7 polarization bands and 5 land surface types are required by the proposed simplified model.
The new LST simulation models appears to be more effective for producing LST compared to past most
studies, of which the accuracy used to be more than 2 ◦C. This study is one of the rare applications that
combine the meteorological observation temperature with MPDI to produce the LST regression analysis
algorithms with less RMSE from AMSR-E data. The results can be referred to similar areas of the world
for LST retrieval or land surface process research, in particular under extreme bad weather conditions.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Since 1990, five strong cold disasters have occurred in Guang-
dong Province of Southern China, causing serious economic losses
(Wang et al., 2004). In 2008, another strong snow disaster attacked
the province again, which is one of the worst storms of the past
50 years. As a result, timely acquirement of regional temperature
information on a large scale is becoming more and more urgent for
emergency management in such situations. This has recently made
the remote sensing of land surface temperature (LST) an impor-
tant research subject in China. Many methodologies have been
established to retrieve LST from thermal infrared satellite sensor
data (Mao et al., 2007a,b). However, the thermal remote sensing is
greatly influenced by cloud, atmospheric water content and rain-
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fall. Therefore, thermal remote sensing from optical sensors cannot
be used to retrieve LST during the periods of cold disasters or under
other bad weather conditions. Microwave remote sensing can just
overcome these disadvantages. Passive microwave emission can
penetrate non-precipitating clouds, thereby providing a better rep-
resentation of LST under nearly all sky conditions. What is more,
daily data are available from microwave radiometers as compared
to optical sensors like LandsatTM, ASTER or MODIS of which only
weekly series products are available. The coarse spatial resolution
of passive microwave remote sensing is not a problem for large
scale studies and therefore providing nearly 20-year time series by
now, which are of great interest for recent climate change studies
(Fily et al., 2003).

Passive microwave remote sensing has already been used to
retrieve LST for almost 20 years. McFarland et al. (1990) made some
significant conclusions: LST for crop/range, moist soils, and dry soils
surface types can be retrieved with linear regression models from
passive microwave SSMI/I brightness temperatures (BT). The BT of
SSMI/I 85 GHz vertical polarization is the primary channel for LST
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correlation. The 19 GHz band can compensate for the influence of
surface water. The difference between 37 and 22 GHz can be uti-
lized to correct the influence of atmospheric water vapor content on
the emission. Njoku (1993) found that neural network method was
more appropriate for developing a useful LST retrieval algorithm.
Multi-channel measurements can estimate and correct the surface
emissivity and atmospheric effects. They also established a nonlin-
ear retrieval algorithm, with an accuracy that can reach 2–2.5 ◦C.
Njoku and Li (1997) also used the satellite microwave radiometer
data at the range of 6–18 GHz frequency to derive LST. A surface
temperature accuracy of 2 ◦C was achievable, except for bare soils
where discrimination between moisture and temperature variabil-
ity is difficult using this algorithm. Aires et al. (2001) developed
a new neural network and variant assimilation method, and the
theoretical RMSE of LST retrieval over globe is 1.3 K in clear-sky
conditions and 1.6 K in cloudy scenes.

However, the passive microwave retrieval algorithm of LST from
AMSR-E BT is rarely seen in the present stage of application of
passive microwave radiometry in China. Mao et al. (2007a,b) estab-
lished a regression analysis model between the BT of the AMSR-E
bands and MODIS LST products. The average retrieval LST error is
about 2–3 ◦C relative to the MODIS LST products. He also found that
the 89 GHz vertical polarization is the best single band to retrieve
MODIS LST. However, over 60% of the areas in MODIS LST product
are influenced by weather, especially cloud. The MODIS LST itself
contains certain errors when the air contains much cloud, atmo-
spheric water content or rainfall. So the regression model between
AMSR-E BT and MODIS LST products lacks some practical signifi-
cance. Our objective here is to establish a regression model between
AMSR-E BT and observation temperatures (Ts) from meteorologi-
cal observation stations over Guangdong Province and to describe
a new, simple, yet still efficient algorithm to derive LST under bad
weather conditions during the snow disaster of Southern China
in 2008. Further more, the ground emissivity has a considerable
impact on the accuracy of retrieved LST from remote sensing data
(Rubio et al., 1997; Yang and Yang, 2006), and it is also influenced
by land surface cover conditions, such as the density of vegeta-
tion cover and soil moisture levels. This paper aims to develop
such a regression model based on different degrees of vegetation
cover.

2. Study data, area and method

2.1. Study data and area

The AMSR-E instrument on the NASA Earth Observing Sys-
tem (EOS) Aqua satellite is a modified version of the AMSR
instrument launched on the Japanese Advanced Earth Observing
Satellite-II (ADEOS-II) in 1999. AMSR-E is a successor in technol-
ogy to the Scanning Multi-channel Microwave Radiometer (SMMR)
and Special Sensor Microwave Imager (SSM/1) instruments, first
launched in 1978 and 1987, respectively. It provides global passive
microwave measurements of terrestrial, oceanic, and atmospheric
variables for the investigation of global water and energy cycles.
The daily AMSR-E BT products during the period of January 25,
2008 to February 5, 2008 were downloaded from the website of
National Snow and Ice Data Center (NSIDC) and used in this study.
The imagery dates (Beijing time—Eastern Eight Zone) are: January
25 (02 h:06 min, 12 h:48 min), January 26 (13 h:32 min), January 27
(01 h:53 min), January 28 (13 h:19 min), January 29 (01 h:41 min),
January 30 (13 h:07 min), February 1 (02 h:12 min, 12 h:55 min),
February 3 (02 h:00 min), February 4 (13 h:26 min) and February
5 (01 h:47 min). They contain BT at 6.9, 10.7, 18.7, 23.8, 36.5, and
89.0 GHz. Data are resampled to be spatially consistent, and there-
fore are available at a variety of resolutions that correspond to the

sizes of footprints of the observations such as 56, 38, 24, 21, and
12 km, respectively. The spatial characters of the AMSR-E products
are given in Table 1.

Guangdong Province, a coastal province, located in South-
ern China, with a population of 86,420,000 people and area of
177,900 km2, was chosen as the study area (Fig. 1). It is a key
center of China on manufacturing, transportation, and import and
export trade. During the period of the 2008 serious snow disas-
ter in China, an unprecedented cold disaster attacked Guangdong
Province. During the disaster, much of the crops and trees there
were damaged and thousands of passengers and cars were blocked
on high ways. Even worse, in some areas, the electrical wire was
disconnected. It caused direct economic losses of about 150 bil-
lion RMB in China (http://www.mca.gov.cn). Retrieving the LST
from microwave remote sensing data is conducive to establish-
ing a microwave monitoring database of cold disasters and is also
useful for government decision-making for future cold disaster pre-
paredness. It is necessary to study on the event using all-weather
microwave remote sensing monitoring. There are 86 meteorolog-
ical observation stations (triangle points in Fig. 1) in Guangdong
Province that correspond to the times of AMSR-E imageries used
in the model development and leave-one-out cross-validation. The
average time difference of in situ meteorological observation and
AMSR-E imageries is 9 min (0–19 min). The daily Ts data (from Jan-
uary 25, 2008 to February 5, 2008), which were used to build the
regression model with the AMSR-E BT in this paper, were provided
by Meteorology Bureau of Guangdong Province.

2.2. Method

2.2.1. Theoretical basis of LST retrieval from AMSR-E data
Compared to the thermal radiance transfer equation, ground

emissivity must be considered in the passive microwave radiance
transfer equation. Atmosphere also has important effects on the
received radiance at a remote sensing sensor level. Taking into
account the two impacts, the general radiance transfer equation
for passive microwave remote sensing of LST can be formulated as
(Mao et al., 2007a,b):

Bf (Tf ) = �f (�)εf Bf (Tsoil) + [1 − �f (�)](1 − εf )�f (�)Bf (T↓
a )

+ [1 − �i(�)]Bf (T↑
a ) (1)

where Tf is the BT in frequency f, Tsoil is the average soil temperature,
Ta is the average atmosphere temperature, Bf(Tsoil) is the ground
radiance, Bf (T↓

a ) and Bf (T↑
a ) are the downwelling and upwelling

path radiance, respectively, �f(�) is the atmosphere transmittance
in frequency f at viewing direction � (zenith angle from nadir), and
εf is the ground emissivity.

Planck’s function (expression (A1) in Appendix A) describes the
relationship between spectral radiance emitted by a black body
and real temperature. On the basis of the Taylor series expan-
sion expression, Planck’s function can be written as expression
(A2) (Appendix A). What is more, as to the AMSR-E, the frequen-
cies of the microwave bands are 6.9, 10.7, 18.7, 23.8, 36.5, and
89.0 GHz. And the LST of Guangdong Province from January 25,
2008 to February 5, 2008 are all greater than −10 ◦C (bigger than
263 K). Therefore, the value of the term hf/kT can be assumed to be
zero. Hence Planck’s function can be simplified as expression (A3)
(Appendix A). Then, Eq. (1) can be simplified as

Tf = �f εf Tsoil + (1 − �f )(1 − εf )�f T↓
a + (1 − �i)T

↑
a (2)

From Eq. (2) we can clearly find that there is a linear relation-
ship between remote sensing BT and LST. We can establish a linear
regression model to retrieve LST from microwave BT.

Furthermore, we assume that a vegetation layer can be consid-
ered as a plane, parallel, absorbing, and scattering medium at a

http://www.mca.gov.cn/
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Table 1
Spatial characteristics of AMSR-E products.

Footprint size Mean spatial resolution Channels (GHz)

89.0 36.5 23.8 18.7 10.7 6.9

75 km × 43 km 56 km � � � � � �
51 km × 29 km 38 km � � � � �
27 km × 16 km 21 km � � �
14 km × 8 km 12 km �

�: Means including the corresponding AMSR-E channel.

Fig. 1. Study area and 86 meteorological observation stations in Guangdong Province.

constant temperature Tc upon the soil surface. The brightness tem-
perature Tp(�,�) of the radiation emitted by vegetation canopy at
an angle � from the zenith can be written as follows (Paloscia and
Pampaloni, 1988):

Tp(�, �) = (1 − w)(1 − e−�/�)Tc + εpTsoile
−�/� (3)

where p stands for horizontal (H) or vertical (V) polarization,
� = cos �. � is the equivalent optical depth, w is the single scat-
tering albedo. The two parameters can characterize the absorbing
and scattering properties of vegetation, respectively. εp is the soil
emissivity for the p polarization.

Microwave polarization difference index (MPDI) (expression
(A4) in Appendix A) is an effective indicator for characterizing the
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Fig. 2. An example explaining the method of matching the imagery pixels’ BT against Ts of 86 meteorological observation stations within Guangdong Province.

land surface vegetation cover density. Using Eq. (3), MPDI used in
the study can be described as

MPDI(�, �) = (εVTsoil V − εHTsoil H)e−�/�

2(1 − w)(1 − e−�/�)Tc + (εVTsoil V − εHTsoil H)e−�/�)

(4)

When there is little vegetation cover over the land surface, the
value of � can be defined as zero. So the MPDI of bare ground can
be written as expression (A5) (Appendix A).

According to Paloscia and Pampaloni (1988), we can assume
εsoil(εV + εH)/2, and Tc = Tsoil. Then Eq. (4) can be further simplified
as

MPDI(�, �) ≈ MPDI(0, �)e−�/� (5)

Obviously from Eq. (5), MPDI mainly depends on � and �, and
MPDI value falls as vegetation becomes thicker. Therefore, MPDI
can indicate the density of land surface vegetation cover. LST is also
influenced greatly by vegetation cover condition. Thus, we clas-
sify the land surface vegetation cover conditions into several types
based on the values of MPDI.

What is more, as the frequency of microwave band becomes
higher, the value of � rises, and the MPDI values fall correspond-
ingly. MPDI of a lower frequency channel is more effective to reflect
the land surface vegetation cover conditions. Therefore, we pro-
duced the MPDI imageries using 6.9 GHz horizontal and vertical
polarization BT. At last, we developed regression LST retrieval algo-
rithms for each land surface type, respectively.

2.2.2. Match microwave BT against observation temperature (Ts)
Since Ts of 86 meteorological observation stations are point-

based, we carried out appropriate processing to calculate the
imagery-pixel BT using nearest pixel temperature or averaged pixel
temperature within the circle of a radius 9,000 m around the mete-
orological observation stations (Fig. 2), because the cycle radius of
9,000 m can just include three or four imagery pixels for acquire-
ment of average BT. At first, we downloaded AMSR-E BT data from
ftp://n4ftl01u.ecs.nasa.gov. The original file type is HDF. We used
HDF Explorer software to extract latitude, longitude and BT infor-
mation from the HDF files, and saved them into separate text files.
Then, ArcGIS was used to read the latitude, longitude and BT infor-
mation and display them. About 2,223 pixels were extracted from
each AMSR-E BT file within Guangdong Province (black dots in
Fig. 2). Then we drew 86 circles centralized at each meteorolog-
ical observation station, containing three or four BT pixels within
each circle. The average values of pixels’ BT that included in the
circle were used to make linear regression analysis with Ts (given
in Fig. 2).

2.2.3. Technical diagram of the study
The simple procedure of LST retrieval is given in Fig. 3. We first

calculate MPDI of Guangdong Province using the AMSR-E 6.9 GHz
BT. Then we classified the land surface cover types of Guangdong
Province based on different values of MPDI. Three classification
methods were implemented in this study at the MPDI intervals of
0.04, 0.02, and 0.01, respectively.

After that, we developed three retrieval models, Model 1, 2 and
3 from AMSR-E BT data at MPDI (6.9 GHz) intervals of 0.04, 0.02

ftp://n4ftl01u.ecs.nasa.gov/
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6.9V and 6.9H

MPDI

to classify land surface at
MPDI interval of 0.04  

Model I Model II Model III

to classify land surface at
MPDI interval of 0.02  

to classify land surface at
MPDI interval of 0.01 

to build linear regression algorithms between Ts and AMSR-E brightness 
temperatures from January 25, 2008 to February 1, 2008 

to compare and analyze LST retrieval models using AMSR-E brightness
temperatures from February 2, 2008 to February 5, 2008 and in-situ observations 

The simplified regression Model of LST 

Fig. 3. Procedure of LST retrieval from AMSR-E BT data in the study.

Table 2
Linear regression algorithms of Model 1 (the interval of MPDI is 0.04). H: horizontal polarization; V: vertical polarization.

Range of MPDI Equation R2 Accuracy evaluated by cross-validation

RMSE (◦C) Average LST
error (◦C)

<0.04 LST = 0.00060 × 6.9H + 0.00183 × 10.7H + 0.01867 × 18.7V − 0.01379 ×
18.7H − 0.00282 × 36.5V + 0.00321 × 36.5H − 0.00005 × 89H + 53.7612

0.782 1.61 1.23

0.04–0.08 LST = 0.00124 × 6.9V − 0.00481 × 10.7V + 0.00210 × 10.7H + 0.02118 ×
18.7V − 0.01204 × 18.7H + 0.00113 × 23.8H + 57.3844

0.686 1.68 1.21

0.08–0.12 LST = 0.00060 × 6.9H − 0.00923 × 10.7V + 0.00425 × 10.7H + 0.02804 ×
18.7V − 0.01434 × 18.7H + 63.87276

0.797 1.81 2.53

Table 3
Linear regression algorithms of Model 2 (the interval of MPDI is 0.02).

Range of MPDI Equation R2 Accuracy evaluated by cross-validation

RMSE (◦C) Average LST error (◦C)

<0.02 LST = 0.00359 × 10.7H + 0.01649 × 18.7V − 0.01378 × 18.7H +
0.00113 × 36.5H − 0.00006 × 89H + 52.63216

0.771 1.60 1.25

0.02–0.04 LST = 0.00097 × 6.9H + 0.00143 × 10.7H + 0.02295 × 18.7V − 0.01558 × 18.7H
+ 0.00171 × 36.5H − 0.00114 × 89V + 69.92912

0.812 1.37 1.09

0.04–0.06 LST = 0.00161 × 6.9V − 0.00189 × 10.7V + 0.01843 × 18.7V − 0.01064 × 18.7H
+ 0.00324 × 36.5V − 0.00097 × 89V + 62.70204

0.783 1.36 1.03

0.06–0.08 LST = 0.01373 × 23.8V − 0.00661 × 23.8H + 48.36916 0.477 2.22 1.70
0.08–0.10 LST = 0.01490 × 23.8V − 0.00746 × 2.38H + 49.94792 0.515 2.45 1.84
0.10–0.12 LST = −0.00604 × 10.7V + 0.00428 × 10.7H + 0.02609 × 18.7V −

0.01472 × 18.7H + 63.88248
0.881 1.47 1.15
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Fig. 4. Correlation analysis between LST retrieved from AMSR-E BT and Ts (the interval of MPDI is 0.04).

and 0.01, respectively, to derive LST of study area from January 25,
2008 to February 5, 2008.

Considering that the above three Models are complicated with
low accuracy at the MPDI range of 0.6–0.9. In order to product more
accurate LST retrieval models when the range of MPDI interval
becomes smaller, a new land surface vegetation cover classifica-

tion rule is proposed as follows: when MPDI is smaller than 0.06,
land surface was seen as the same land vegetation cover type (being
covered with dense vegetation); when MPDI is between 0.06 and
0.09 (land surface being covered with sparse vegetation mixed with
bare soil), the land surface was further classified into three types
(MPDI: 0.06–0.07; 0.07–0.08; 0.08–0.09) according to the new land

Table 4
Linear regression algorithms of Model 3 (the interval of MPDI is 0.01).

Range
of MPDI

Equation R2 Accuracy evaluated by cross-validation

RMSE (◦C) Average LST
error (◦C)

<0.01 LST = 0.00494 × 6.9H + 0.00395 × 23.8V + 64.77052 0.751 1.70 0.90
0.01–0.02 LST = 0.00313 × 10.7H + 0.01626 × 18.7V − 0.01314 × 18.7H + 0.00151 × 23.8H + 54.51868 0.763 1.54 1.06
0.02–0.03 LST = 0.00142 × 6.9H + 0.02101 × 18.7V − 0.01315 × 18.7H + 0.00382 × 36.5V − 0.00158 ×

89H + 75.82136
0.846 1.24 0.88

0.03–0.04 LST = 0.00082 × 6.9V + 0.02021 × 18.7V − 0.01110 × 18.7H + 64.53724 0.798 1.59 0.90
0.04–0.05 LST = 0.00199 × 6.9V + 0.01495 × 18.7V − 0.01136 × 18.7H + 0.00481 × 23.8V − 0.00141 ×

89V + 58.03964
0.833 1.26 0.89

0.05–0.06 LST = 0.00104 × 6.9V − 0.00390 × 10.7V + 0.02206 × 18.7V − 0.00955 × 18.7H + 61.5722 0.755 1.42 0.71
0.06–0.07 LST = 0.00110 × 6.9H + 0.00998 × 36.5V − 0.00457 × 36.5H + 52.19068 0.716 1.47 0.91
0.07–0.08 LST = 0.00122 × 6.9H + 0.01109 × 18.7V − 0.00823 × 18.7H + 0.00500 × 23.8V + 62.21144 0.716 1.92 1.10
0.08–0.09 LST = 0.01496 × 36.5V − 0.00720 × 36.5H + 52.18968 0.757 1.89 1.10
0.09–0.10 LST = 0.01338 × 23.8V − 0.00607 × 23.8H + 50.59308 0.754 1.85 1.28
0.10–0.11 LST = 0.00744 × 10.7V + 55.90692 0.791 1.48 1.09
0.11–0.12 LST = 0.209 × 6.9V + 0.390 × 89V − 144.236 0.777 1.98 1.22
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Fig. 5. Correlation analysis between LST retrieved from AMSR-E BT and Ts (the interval of MPDI is 0.02).

surface vegetation cover classification rule; when MPDI is between
0.09 and 0.12, the land surface was defined as bare soil. As the num-
ber of areas where the MPDI > 0.12 is few and far between (about
13 of 2,223 pixels in each AMSR-E BT file), there is no statistically
significance to built regression algorithms for such areas. So we
ignored those areas where MPDI > 0.12. Finally, a simplified LST
retrieval model was established based on the new vegetation cover
classification rule mentioned above.

3. Results and discussion

3.1. The three LST models with MPDI intervals at 0.04, 0.02 and
0.01

The scatter diagrams were presented to compare the MDPI-
based LST retrieved from AMSR-E BT with Ts observed by 86
meteorological observation stations. Average LST errors and RMSE
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by leave-one-out cross-validation were used to evaluate the
retrieval results of the three models. Detailed descriptions of the
three models are as following:

(1) Model 1: We classified the land surface into three types at the
MPDI interval of 0.04, and built three linear regression algo-
rithms for each land surface type in total (Fig. 4).

(2) Model 2: On the basis of Model 1, we further classified the land
surface into six types at the MPDI interval of 0.02, and devel-
oped six linear regression algorithms for each land surface type
(Fig. 5).

(3) Model 3: Similarly, we classified the land surface of study area
into twelve types at the MPDI interval of 0.01, and established
twelve linear regression algorithms for each land surface type
correspondingly (Fig. 6a and b).

Fig. 6. (a) Correlation analysis between LST retrieved from AMSR-E BT and Ts (the interval of MPDI is 0.01); (b) correlation analysis between LST retrieved from AMSR-E BT
and Ts (the interval of MPDI is 0.01).
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Fig. 6. (Continued ).

Average temperature errors of Model 1 between Ts and LST are
listed in Table 2 and Fig. 4. It clearly showed that when MPDI <0.08
(under dense vegetation cover condition), the LST retrieval algo-
rithm is more effective (smaller average temperature error); when
0.08 < MPDI < 0.12, the average LST Error attains 2.53 ◦C. However,
the RMSE of three regression algorithms are not more than 1.81 ◦C
(R2 ≥ 0.686) with average error 0f 1.66 ◦C.

The analyzed results of Model 2 are given in Table 3 and Fig. 5.
It clearly showed that all the LST retrieval algorithms are very
effective (LST error range: 1.03–1.84 ◦C, average error at 1.34 ◦C)
except for the two MPDI range: 0.06–0.08 (R2 = 0.477, RMSE = 2.22)
and 0.08–0.10 (R2 = 0.515, RMSE = 2.45). R2 of the two algorithms
are relatively low and RMSE is a little higher than others. The LST
retrieval algorithms are only effective under dense vegetation cover
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Fig. 7. Comparison of LST retrieved from AMSR-E BT and Ts (final simplified LST retrieval model) (the interval of MPDI is 0.01 at the MPDI range of 0.6–0.9).

and bare soil conditions. On the whole, the RMSE of Model 2 is still
within 2.45 ◦C (1.36–2.45 ◦C) with average RMSE at 1.75 ◦C.

The accuracy analysis of Model 3 validated by leave-one-out
cross-validation method is given in Fig. 6a and b and Table 4. It
clearly showed that all LST algorithms of model 3 are effective
with average temperature errors between 0.71 and 1.28 ◦C (R2:
0.716–0.846), so the LST retrieval algorithms are more accurate
by using smaller MDPI intervals to classify the land surface cover

conditions. The RMSE of regression algorithms are not more than
2.0 ◦C (1.24–1.98 ◦C, average RMSE at 1.61 ◦C), which is better than
the former two models’ results (Model 1 and Model 2). Only when
the MPDI values are more than 0.07, the RMSE of models are more
than 1.8 ◦C (1.85–1.98 ◦C).

Seen from the above discussions, we note that all the three Mod-
els were not perfect. The accuracy levels of Model 1 and Model 2
were a little lower. Average LST errors of the two Models were also



150 S.-s. Chen et al. / International Journal of Applied Earth Observation and Geoinformation 13 (2011) 140–151

Table 5
Linear regression algorithms of the simplified Model.

Range of MPDI Algorithm equations R2 Accuracy evaluated by cross-validation

RMSE (◦C) Average LST error (◦C)

<0.06 LST = 0.00104 × 6.9H + 0.01801 × 18.7V − 0.01151 × 18.7H − 0.00201 ×
23.8V + 0.00271 × 23.8H + 56.82032

0.781 1.56 1.25

0.06–0.07 LST = 0.00110 × 6.9H + 0.00998 × 36.5V − 0.00457 × 36.5H + 52.19068 0.716 1.47 0.91
0.07–0.08 LST = 0.00122 × 6.9H + 0.01109 × 18.7V − 0.00823 × 18.7H + 0.00500 ×

23.8V + 62.21144
0.716 1.92 1.10

0.08–0.09 LST = 0.01496 × 36.5V − 0.00720 × 36.5H + 52.18968 0.757 1.89 1.10
0.09–0.12 LST = 0.01783 × 18.7V − 0.00922 × 18.7H + 58.03248 0.818 1.84 1.30

a bit higher (1.66 and 1.34 ◦C, respectively) compared to Model
3 (1.00 ◦C). Model 3 is more complicated than the other two. We
intend to develop a simpler yet effective LST retrieval model based
on the three Models (Models 1, 2 and 3).

3.2. Proposed simplified LST simulation model and accuracy
analysis

Comparing Tables 2–4 together, we can say that it is an effec-
tive way to derive LST based on the land surface vegetation cover
classification using AMSR-E 6.9 GHz MPDI. On the whole, as the
MPDI interval becomes smaller and smaller, the LST retrieval mod-
els are getting more and more accurate. However, there are no
obvious improvements on algorithmic accuracies where land sur-
faces are covered by dense vegetation (MPDI < 0.06) and bare soil
(0.09 < MPDI < 0.12). But the accuracies of regression algorithms
for sparse vegetation cover areas (0.06 < MPDI < 0.09) are greatly
improved when the MPDI interval reached 0.01 (average LST error:
from about 1.8 to 1.04 ◦C). This is because in these areas the land
surface is a mixture of bare soil and small vegetation (Julien et al.,
2006; Mao et al., 2007a,b). Since it is difficult to develop an effective
algorithm for such areas when MPDI interval is bigger than or equal
to 0.02, we reduce the scale of MPDI interval into 0.01 to classify the
land surface vegetation cover for areas where MPDI is between 0.06
and 0.09. Based on the above conclusions, we finally developed a
simpler yet more effective LST retrieval model (Table 5 and Fig. 6).

Besides, scatter graphs were presented to compare LST retrieved
from AMSR-E BT with Ts observed between February 2, 2008 and
February 5, 2008 to evaluate the accuracy of the simplified model
(Fig. 7).

Seen from Table 5 and Fig. 7, when MPDI is smaller than 0.06
or is larger than 0.09, it is unnecessary to reduce the MPDI inter-
val anymore, and we can still build an effective linear regression
algorithm for each surface cover type. However, when MPDI value
is between 0.06 and 0.09, we need to divide MPDI intervals into
three ranges: 0.06–0.07, 0.07–0.08 and 0.08–0.09 for establishing
more accurate LST regression algorithms. Hence we develop three
linear regression algorithms for each MPDI range, respectively. In
this way, the RMSE of all algorithms of the simplified model can
reach 1.47–1.89 ◦C (within 1.9 ◦C). The average temperature errors
between Ts and LST are 0.91–1.30 ◦C. The results indicate that the
simplified model of LST retrieval from AMSR-E BT data is almost as
accurate as Model 3 and as simple as Model 1. The retrieval results
were also more accurate than the results of former similar stud-
ies (Njoku, 1993; Njoku and Li, 1997; Aires et al., 2001; Mao et al.,
2007a,b).

What is more, from Tables 2–5, we can clearly find that 3 bands
of AMSR-E (6.9, 18.7 and 36.5 GHz) are the key channels to retrieve
LST. This is because these 3 channels are low frequency bands and
hardly influenced by the atmosphere effects under bad weather
conditions. The contribution of 6.9 GHz band is to distinguish the
land surfaces’ vegetation cover conditions. However, the BT dif-
ferences between 36.5V and 36.5H, 23.8V and 23.8H, 18.7V and

18.7H, 10.7V and 10.7H can also be used to compensate the influ-
ence of soil moisture and vegetation condition. Only 89 GHz is not
included in this LST retrieval model. It is because 89 GHz band is
more likely to be influenced by the atmosphere than other AMSR-E
bands, especially under bad weather conditions. It is not an effec-
tive channel to retrieve LST from AMSR-E BT (Clara et al., 2009;
Chris, 2008).

3.3. Advantages of the simplified LST model

The simplified model approach is a combination of the advan-
tages of Models 1, 2 and 3. The accuracy of the simplified model (R2:
0.716–0.818, RMSE: 1.47–1.92 ◦C, average LST error: 0.91–1.30 ◦C)
is obviously higher than the Models 1 and 2 (Model 1, R2:
0.686–0.797, RMSE: 1.61–1.81 ◦C, average LST error: 1.23–2.53 ◦C;
Model 2, R2: 0.477–0.881, RMSE: 1.36–2.45 ◦C, average LST error:
1.03–1.84 ◦C). Although the accuracy of Model 3 (R2: 0716–0.846,
RMSE: 1.24–1.98 ◦C, average LST error: 0.71–1.28 ◦C) is nearly the
same as the simplified model. However, all AMSR-E polarization
bands are required in Model 3 while only 7 polarization bands are
required by the simplified model. What is more, the approach of
Model 3 has to classify the land surface into 12 types vs. only 5
types needed for the simplified LST model. Obviously, the models
can be applied to other similar area, but further work is needed for
validation.

4. Conclusions

Based on analysis of the passive microwave radiance transfer
equation, and MPDI-based surface cover classification, we built
a simple yet effective LST retrieval model (average error of LST:
0.91–1.30 ◦C) by combining AMSR-E BT with observation temper-
atures. This study is one of the rare applications that use the
field temperature to make regression analysis with AMSR-E BT
products during a strong cold disaster period of 2008 in South-
ern China. It is also a referential example for using AMSR-E BT
product to derive AMSR-E LST algorithms under extreme weather
conditions.

On the basis of different MPDI intervals: 0.04, 0.02 and 0.01,
three LST retrieval Models (Models 1, 2 and 3) with different per-
formances in accuracies and complications were analyzed and
combined to produced the improved simplified model. Authors
classified the land surface into five types ranges of MPDI value are:
<0.06, 0.06–0.07, 0.07–0.08, 0.08–0.09, and 0.09–0.12, respectively
(corresponding to dense vegetation (<0.06), sparse vegetation
mixed with bare soil (0.06–0.07, 0.07–0.08, and 0.08–0.09), bare
soil (0.09–0.12)). We ignored those areas where MPDI > 0.12 (only
13 of 2,223 pixels in each AMSR-E BT file). Five linear regression
algorithms were developed from each land surface type of the five
MPDI ranges. The average error of LST retrieval by the simplified
model is about 0.91–1.30 ◦C (model average at 1.13 ◦C) compared
to the 1.03–2.53 of Model 1 and Model 2 (model average at 1.50 ◦C).
Besides, all AMSR-E polarization bands and 12 land surface types
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are required in Model 3 while only 7 polarization bands and 5
land surface types are required by the proposed simplified model
approach.

It is an effective way to derive LST based on the land surface veg-
etation cover classification using AMSR-E 6.9 GHz MPDI method.
And further, with the range of MPDI intervals becoming smaller
the LST retrieval algorithms are getting more accurate. However, as
MPDI intervals become smaller and smaller, there are no obvious
improvements for the accuracies of algorithms where land surfaces
are defined as bare soil (0.09 < MPDI < 0.12) and covered by dense
vegetation (MPDI < 0.06) (shown in Models 1, 2 and 3). But the accu-
racies of simplified algorithms for sparse vegetation cover areas
(0.06 < MPDI < 0.09) are greatly improved when the value of MPDI
interval reaches 0.01. To a certain extent, this research makes up
for limitations of Njoku’s LST retrieval algorithm, which was less
effective for bare soil areas (Njoku and Li, 1997). The accuracy of
this simplified LST retrieval model is also much higher than former
LST retrieval algorithms (usually ≥2 ◦C) from passive microwave
data (Njoku, 1993; Njoku and Li, 1997; Aires et al., 2001; Mao et al.,
2007a,b).

This study is an attempt to use AMSR-E BT data retrieving winter
LST in Southern China. Result confirms that the simplified LST simu-
lation model based on MPDI and in situ observed temperature have
the potential to gain more precise LST from AMSR-E remote sens-
ing data. The new method can be applied to other similar regions
supporting of ground observation, but needs to be further investi-
gated.
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Appendix A.

The Planck’s function and its derived intermediate expressions
are listed following:

Bf (T) = 2hf 3

c2(ehf/kT − 1)
(A1)

Bf (T) = 2kT

�2

1

1 + (hf/kT) + (hf/kT)2 + . . . + (hf/kT)n
(A2)

Bf (T) = 2kT

�2
(A3)

where T is the temperature in Kelvin, Bf(T) is the spectral radiance of
the blackbody at T Kelvin, h is the Planck constant, f is the frequency
of the wave band, c is the light speed, and k is Boltzman constant.

The definition formula of MPDI and its derived intermediate
expressions are listed as following:

MPDI(�, �) = Tbv − Tbh

Tbv + Tbh
(A4)

MPDI(0, �) = εV − εH

εV + εH
(A5)

where h and v stand for horizontal (H) or vertical (V) polarization,
respectively; � = cos �; � is the equivalent optical depth; εp is the
soil emissivity for the p polarization.
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