鼎湖山秋季大气细粒子及其二次无机组分的污染特征 及来源

刘子锐',王跃思'*,刘全',刘鲁宁',张德强²

(1. 中国科学院大气物理研究所 LAPC ,北京 100029; 2. 中国科学院华南植物园 广州 510650)

摘要: 利用大气颗粒物质量浓度分析仪(TEOM) 及大气细粒子快速捕集及其化学成分自动在线分析系统(RCFP-IC) 于 2008 年 $10\sim11$ 月在中国科学院华南植物园鼎湖山定位站进行了大气细粒子($PM_{2.5}$) 及其二次无机组分(SO_4^{2-} 、 NH_4^* 和 NO_3^-) 与相关污染气体组分的同步观测与分析。同时结合主成分分析和 HYSPLIT 轨迹模式对颗粒物的来源和传输过程进行了探讨。结果表明,观测期间 $PM_{2.5}$ 的日平均浓度为 $76.9~\mu g^{\bullet} m^{-3}$, $PM_{2.5}$ 中 SO_4^{2-} 、 NH_4^* 和 NO_3^- 的日均浓度分别为 20.0、6.8 和 $2.6~\mu g^{\bullet} m^{-3}$.二次无机组分浓度之和超过 $PM_{2.5}$ 质量浓度的 35% ,为鼎湖山地区大气细粒子的主要组成部分;细粒子中 SO_4^{2-} 和 NH_4^+ 浓度日变化表现出与 $PM_{2.5}$ 相一致的"双峰"型分布特征。峰值分别出现在 10:00 和 16:00;而 NO_3^- 仅在 10:00 出现单一峰值。细粒子中 SO_4^{2-} 浓度的日变化与大气中 SO_2 浓度的日变化特征相似 SO_4^{2-} 主要由 SO_2 转化而来;而 NO_3^- 浓度的日变化特征则异于 NO_2 , NO_2 的二次转化率(NOR) 远低于 SO_2 的二次转化率(SOR) . 细粒子中 NH_4^+ 主要以硫酸盐、硝酸盐及氯盐的形式存在。主成分分析结合后向轨迹推算,鼎湖山地区大气细粒子污染主要来自于珠江三角洲地区城市群如广州和惠州等的区域输送,同时本地二次硫酸盐的贡献较大而一次排放的贡献较小.

关键词: PM。。; 二次无机组分; 污染特征; 形成机制; 珠三角地区

中图分类号: X131.1; X513 文献标识码: A 文章编号: 0250-3301(2011)11-3160-07

Pollution Characteristics and Source of the Atmospheric Fine Particles and Secondary Inorganic Compounds at Mount Dinghu in Autumn Season

LIU Zi-rui 1, WANG Yue-si 1, LIU Quan 1, LIU Lu-ning 1, ZHANG De-qiang 2

(1. LAPC, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; 2. South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China)

Abstract: Real-time measurements of PM_{2.5}, secondary inorganic compounds in PM_{2.5} (SO₄²⁻, NH₄⁺, and NO₃⁻) and related gaseous pollutants were conducted at Mount Dinghu, a regional background station of the Pearl River Delta (PRD), in October and November 2008 by using a conventional R&P TEOM and a system of rapid collection of fine particles and ion chromatography (RCFP-IC). Sources and transportation of atmospheric particles during the experiment were discussed with principal component analysis and backward trajectories calculated using HYSPLIT model. The average daily mass concentrations of PM_{2.5} were 76.9 μg·m⁻³ during sampling period , and average daily mass concentrations of SO_4^{2-} , NH_4^+ , and NO_3^- were 20.0 $\mu g \cdot m^{-3}$, 6.8 $\mu g \cdot m^{-3}$ and 2.6 $\mu g \cdot m^{-3}$, respectively. The sum of these three secondary inorganic compounds accounted for more than one third of the PM, 5 mass concentration , which had become the major source of atmospheric fine particles at Mount Dinghu. The diurnal variation of PM2, 5, SO2 - and NH4 all showed a "bimodal" distribution with two peaks appeared at 10:00 am and at 16:00 pm , respectively , whereas NO3-showed "single peak" distribution peaked at 10:00 am. The mass concentrations of SO₄- in PM_{2.5} had the similar diurnal variation with that of SO₂, SO4 in PM, was mainly transformed from SO, whereas NO3 showed difference diurnal variation with that of NO, and the second conversion rate of NO, was far lower than that of SO,. NH4 in PM, sexisted mainly in the form of sulfate, nitrate and chloride. Both of principal component analysis and back trajectory analysis showed that the variations of PM2.5 and secondary inorganic compounds at Mount Dinghu were mainly affected by the long-range transport air mass passed over Guangzhou, Huizhou and other highly industrialized areas which carried air pollutants to the observation site, at the same time local sulfate originated from secondary formation also contributed an important part of atmospheric fine particles and the contribution from local direct emission was little.

Key words: PM_{2.5}; secondary inorganic compounds; pollution characteristic; formation mechanism; PRD region

大气颗粒物细粒子(PM_{2.5})直接影响大气环境质量、大气能见度和人体健康,成为当前国内外许多城市面临的重要环境问题^[1].由于 PM_{2.5}的环境效应、气候效应和健康效应均与其化学组成直接相

收稿日期:2011-01-08;修订日期:2011-03-07

基金项目: 国家高技术研究发展计划(863) 项目(2006AA06A301) 作者简介: 刘子锐(1982 ~) ,男 ,博士研究生 ,主要研究方向为大气 化学 ,E-mail: lzr@ dq. cern. ac. cn

^{*} 通讯联系人, E-mail: wys@ dq. cern. ac. cn

关,因此对PM。,化学表征的研究已成为大气化学领 域重要热点问题之一[2]. 近年来随着经济的快速发 展,珠三角地区的大气污染问题日趋严重[3].由于 该区域各个大中城市经济发展速度相对均衡,大气 污染亦呈现出显著的区域性特征[4]. 大气细粒子中 的二次无机组分(SO_4^{2-} 、 NH_4^+ 和 NO_3^-)是大气细粒 子中最重要的无机盐,也是表征区域污染的重要指 标,目前对珠三角地区大气细粒子二次无机组分的 研究主要集中在广州[5]、深圳[6]、香港[7]等大型城 市 区域本底地区的研究鲜见报道[8]. 鼎湖山地处 广东省西北,属经济高速发展的珠江三角洲城市群 区域大气本底,对该地区大气细粒子污染及其化学 组成分析,对研究整个珠江三角洲大气污染水平及 演变具有重要参考意义. 本研究于 2008 年秋季在珠 三角区域本底站进行了大气细粒子(PM, 5)及其二 次无机组分(SO_4^{2-} 、 NH_4^+ 和 NO_3^-)与相关气体组分 的同步观测,并对珠三角本底地区大气细粒子的污 染特征、形成机制及来源进行了系统分析.

1 材料与方法

1.1 观测地点与时间

观测地点位于广东省肇庆市鼎湖山国家级自然保护区内的中国科学院华南植物园鼎湖山森林生态系统定位研究站院内(23°10′N,112°33′E),采样点设在实验楼3楼楼顶,距地面高度约10 m.观测时间为2008-10-24~2008-11-08.

1.2 观测方法

利用本实验室研制的大气细颗粒物快速捕集系统(RCFP)(申请号 2004100314626),并与离子色谱(IC)相联构成的 RCFP-IC 系统 $^{[9]}$,美国 Rupprecht & Patashnik 公司生产的 $\mathrm{rp}1405\,\mathrm{DF}$ 颗粒物监测仪 $^{[10]}$,美国热电公司生产的 SO_2 、 O_3 、 CO 和 NO_2 - NO_2 - NO_3 - Tr 5 数据测仪以及芬兰 Vaisala 公司生产的

Milos520 自动气象站^[11] ,对大气颗粒物 $PM_{2.5}$ 中的水溶性无机盐、 $PM_{2.5}$ 质量浓度、大气中 SO_2 、 O_3 、CO、NO 和 NO_2 浓度 ,以及研究时段的气象参数(风向、风速、温度、湿度、降水和紫外辐射) 进行了同步连续观测.

1.3 气流轨迹分析

利用美国海洋与大气管理局(NOAA) 空气资源实验室(ARL) 提供的混合型单粒子拉格朗日综合轨迹模式(HYSPLIT) [12] 和 NCEP GDAS 数据计算每日到达观测点附近气团的后向轨迹. 每日每隔 4 h计算 1 次,包括每日起止时间,后推时间为 72 h,起始高度为 500 m^[13];对后向轨迹进行聚类分析(K-Means) 判断气团的主要来源和途径区域^[14].

2 结果与讨论

2.1 PM_{2.5}及 PM_{2.5}中二次无机组分质量浓度水平

观测期间鼎湖山地区秋季 PM。, 的日均质量浓 度在 12.2~158.5 μg·m⁻³之间,变化幅度较大,平 均为(76.9 ± 45.7) μg·m⁻³; PM, 5 中表征二次污染 的关键水溶性离子 SO4 、NH4 和 NO5 的日均浓度 分别为(20.0 ± 9.7)、(6.8 ± 4.5)和(2.6 ± 2.1) $\mu g \cdot m^{-3}$ (表 1) 在 PM_{2.5}中所占的比例分别为 26%、 9% 和 3% ,三者浓度之和超过了 PM, 5质量浓度的 1/3 其中 SO_4^{2-} 是 PM, 5中最主要的二次水溶性无机 组分,说明二次粒子(SNA)已经成为鼎湖山地区大 气细粒子的主要组成部分. 作为 SO_4^2 和 NO_7 的气 态前体物,观测期间 SO₂和 NO₂的日均浓度分别为 (33.2 ± 20.3) μg·m⁻³ 和 (21.2 ± 10.1) μg·m⁻³ (表 1). 从表 1 中还可以看出,观测期间无论是大气细 粒子及二次无机组分 还是污染气体 其日均浓度变 化幅度均较大,尤其是3种二次无机离子,其日均最 大值比日均最小值高出30倍以上,说明观测期间鼎 湖山地区出现了较严重的污染过程.

表 1 $PM_{2.5}$ 、 $PM_{2.5}$ 中二次无机组分和相关气体的日均值浓度水平/ $\mu g^{\bullet} m^{-3}$

Table 1 Daily mass concentration of $PM_{2.5}$, secondary inorganic compounds in $PM_{2.5}$ and related gaseous pollutants $/\mu g^{\bullet}m^{-3}$

项目	PM _{2.5} —	PM _{2.5} 中二次无机组分			相关气体				
		SO ₄ -	NH ₄ ⁺	NO ₃	SO ₂	NO	NO_2	03	CO
平均值	76. 9	20. 0	6. 8	2. 6	33. 2	1.6	21. 2	49. 9	950. 3
标准差	45.7	9. 7	4. 5	2. 1	20. 3	1.4	10. 1	23.6	255. 5
最大值	158. 5	32. 2	14. 2	6. 2	66. 9	4.8	37. 2	98. 9	1 557. 5
最小值	12. 2	1.3	0.3	0. 2	4. 5	0.1	7. 2	14. 3	698. 4

与珠三角地区主要城市相比 ,鼎湖山地区大气细粒子质量浓度均低于 2004 年秋季广州、深圳和香港的平均水平 , SO_4^{2-} 和 NH_4^+ 的平均浓度同样低

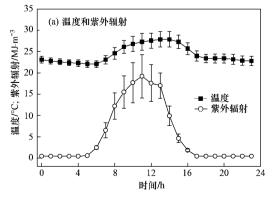
于上述 3 个城市,而 NO_3 浓度较广州和深圳低,但高于香港(表 2).作为珠三角区域本底站,鼎湖山地区 2008 年秋季 PM_3 及其二次无机组分浓度尽管低

干同区域的城市地区,但二者数值却较为接近,笔者 分析认为主要有以下 2 个方面的原因 ,其一是珠三 角地区细粒子的区域污染逐年加剧 "So 等[15] 在香 港的观测结果表明,香港地区大气细粒子中 SO₄-的浓度 2000~2005 年间增长了 36% ,同时指出这 种增长是区域污染加剧的结果,因此可以推测 2008 年秋季上述 3 个城市大气细粒子及二次无机组分的 浓度相比 2004 年秋季有较大提高 其浓度值要大于 表 2 给出的数值; 其二是观测方法间存在差异,本研 究中二次无机组分的监测采用大气细颗粒物在线分 析系统(RCFP-IC),而上述3个城市站的监测仪器 均为大气颗粒物四通道采样器(美国 Thermo Andersen) 利用滤膜(Teflon 膜和石英膜) 收集大气 细粒子. 最近的一份研究指出[16] ,尽管滤膜采样的 方法与在线分析的方法在测定 SO_4^{2-} 上差异较小, 但却会低估 NO。的浓度 ,尤其是在高温高湿的环境 下, 而珠三角地区秋季的典型气象特征即为高温高

湿[17] 因此珠三角地区秋季利用滤膜采样的分析方 法会明显低估 NO, 的浓度. 表 2 中广州郊区(新 垦) NO: 的浓度明显高于广州城区的现象印证了上 述结论 前者采用的是在线分析系统 而后者则利用 的滤膜采样分析方法. 同样 鼎湖山地区 NO。的浓 度高于香港地区的现象也与滤膜采样的方法低估 NO: 的浓度有关. 从表 2 还可以看出 ,鼎湖山地区 大气细粒子及二次无机组分的平均浓度与临安大气 本底监测站测定的数值接近,但明显高于贡嘎山大 气本底监测站的平均水平,这反映了3个大气本 底站各自代表区域的大气污染水平存在差异. 鼎 湖山站和临安站分别处于珠三角地区和长三角地 区,这2个地区均处于经济高速阶段,相应的大气 污染物的排放量较高,空气污染现象严重,而贡嘎 山站的海拔较高,同时所处的西南地区经济发展 相对较慢,大气污染物的排放量较低,因而空气较 为清洁.

表 2 与珠江三角洲主要城市及区域大气本底站 $PM_{2.5}$ 及 $PM_{2.5}$ 中二次无机组分质量浓度比较 $/\mu g^{ullet m^{-3}}$

Table 2 Comparison of the mass concentration of PM2.5 and secondary inorganic compounds in PM2.5


between this study and the related study results in references/µg·m ⁻³

		•		•	•	0		
采样地点	采样时间(年-月)	PM _{2.5}	SO ₄ -	$\mathrm{NH_4}^+$	NO ₃	SNA 1)	$\mathrm{SNA/PM}_{2.5}$	文献
鼎湖山	2008-10 ~ 2008-11	76. 9	20. 0	6. 8	2. 6	30. 7	0.38	本研究
广州	2004-10 ~ 2004-11	102. 9	27.8	12. 1	4. 3	44. 2	0.43	[5]
深圳	2004-11 ~ 2004-12	99. 0	23.9			37. 6	0.38	[6]
香港	2004-10	81.4	24. 1	9. 3	0.9	34. 3	0.42	[7]
新垦	2004-10 ~ 2004-11		24. 1	9. 2	7. 2	40. 5		[18]
临安	1999-10 ~ 1999-11	90. 0	21. 2	8.6	7.7	37.5	0.42	[19]
贡嘎山	2005-12 ~ 2006-11		3.5	1.5	0.6	5.6		[20]

1) SNA 为 SO₄ - + NH₄ + NO₃

2.2 $PM_{2.5}$ 及 $PM_{2.5}$ 中二次无机组分质量浓度日变化

观测期间紫外辐射、温度、相对湿度和风速的 日变化如图 1 所示. 从图 1(a) 可以看出,紫外辐射 的最大值出现在中午 $12:00(19.2~\mathrm{MJ} \cdot \mathrm{m}^{-3})$,日最低温度出现在上午 07:00(22.1%) ,而最高温度则出现在下午 15:00(27.9%) . 相对湿度的日变化特征与温度相反 ,最大值出现在凌晨 07:00 ,而最低值出

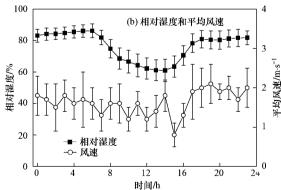


图 1 观测期间气象要素(温度和紫外辐射;相对湿度和平均风速)日变化

Fig. 1 Diurnal variations of temperature and UV radiation and relative humidity and wind speed during the measuring period

现在下午 15:00 [图 1(b)]. 观测期间平均风速的最大值出现在晚上 $08:00(2.1~{\rm m}\cdot{\rm s}^{-1})$,而平均最低风速出现在下午 $16:00(0.8~{\rm m}\cdot{\rm s}^{-1})$,夜间平均风速较高,而下午风速较低. 从整体上看,观测期间温度较高,而风速较低,降雨事件较少,仅 11 月 $2\sim5$ 日以及7日出现降雨,而且除 2 日夜间至 3 日凌晨出现持续降雨外,其它 3 d 降雨持续时间较短($<2~{\rm h}$)且降雨量较少($<10~{\rm mm}\cdot{\rm h}^{-1}$).

图 2 显示了观测期间 PM_{2.5}、SO₄²⁻、NH₄⁺、NO₃⁻ 以及相关的气体 SO,、NO、NO,、O,和 CO 的日变 化特征. 从图 2(a) 可以看出 ,PM, 5与混合层高度的 日变化特征基本一致 ,PM , 质量浓度从凌晨 07:00 开始逐步上升,于10:00左右达到第1个峰值,随后 浓度小幅度降低 ,13:00 以后浓度继续升高并于 16: 00 左右达到第 2 个峰值 ,此后浓度逐渐降低. SO₄-和 NH, 的日变化特征与 PM, 类似 ,呈 "双峰型"分 布,而 NO, 则仅在 10:00 左右出现峰值. SO₄ 、 NO、和 NH t 主要由气态 SO,、NO, 和 NH、在大气 中通过复杂的气相或液相反应形成^[21].由图 2(c) 可见 SO₂ 与 SO₄ - 的日变化特征相似,两者峰值出 现的时间也一致. SO_4^{2-} 上午峰值的出现可能与 SO_2 通过云内液相反应生成的 SO₄ - 随对流输送到地面 有关,而 SO_4^{2-} 下午的峰值对应着 O_3 峰值 [图 2 (b)],同时较高浓度气态前体物的存在有利于

 SO_4^{2-} 通过气相反应生成 [22]. 作为 NO_3^- 的气态前体物 NO_2 与 NO_3^- 上午峰值出现的时间一致 ,而 NO_2 下午的峰值并未对应着 NO_3^- 的峰值. NO_3^- 浓度的变化不仅与 NO_2 与 OH 自由基通过光化学反应生成气态硝酸有关 ,同时也与其在气态和颗粒态之间的平衡有关. 大气细粒子中硝酸盐的主要存在形式是硝酸铵 ,是大气中的气态 HNO_3 被 NH_3 中和的产物 ,反应过程如下式所示:

$$NH_3(g) + HNO_3(g) \rightleftharpoons NH_4NO_3(s)^{[21]}$$

平衡主要受温度控制,随着温度的升高,平衡向气态 HNO_3 方向移动,从而导致颗粒态硝酸根浓度的降低,与此同时, SO_2 向气态 H_2SO_4 的转化率升高,而气态 H_2SO_4 浓度的升高使其与气态 HNO_3 竞争 NH_3 的能力增强,从而导致 NO_3^- 浓度的进一步降低,因此 NO_3^- 并未在 16:00 左右出现如 NO_2 一样的峰值.

硫氧化率 $SOR[SO_4^2 - 与总硫(SO_4^2 + SO_2)$ 的质量浓度比]和氮氧化率 $NOR[NO_3^2 - 与总氮(NO_3^2 + NO_2)$ 的质量浓度比]可以反映出气体二次转化的程度 SOR 和 NOR 的值越高就表示 SO_2 和 NO_2 气体更多地转化为二次气溶胶颗粒 $[^{23}]$. 从图 2(c) 可见, $10:00\sim17:00$ SOR 逐步增大,说明随着温度的升高 SO_2 向 SO_4^2 的转化程度也增大,而此期间 NOR 呈逐步降低的趋势,这可能与 NO_3^2 主要以气态 HNO_3

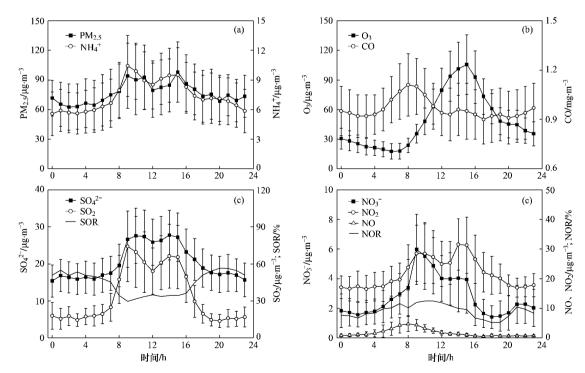


图 2 PM_{2.5}、PM_{2.5}中二次无机组分(SO₄²、NH₄⁺和 NO₃⁻)以及相关气体(SO₂、NO₂、O₃和 CO)浓度日变化 Fig. 2 Diurnal variations of PM_{2.5} SO₂ NO₃NO₂ O₃ CO and secondary inorganic compounds in PM_{2.5}

的形式存在有关. 观测期间 SOR 平均值为 45% ± 18% ,而 NOR 仅为 9% ± 7% ,说明研究期间鼎湖山地区大气 $PM_{2.5}$ 中硫酸盐主要是经过转化形成的二次污染物 ,而 NO_2 的二次转化率远低于 SO_2 的转化率 , $PM_{2.5}$ 中硝酸盐可能来自于其它途径.

鼎湖山地区 SO²⁻ 和 NO, 的日变化特征与 Hu 等[18] 在新垦以及 Zhou 等[24] 在泰山的观测结果一 致 而 NH4 的日变化特征则异于新垦而与泰山一 致. 新垦地区 NH 并没有如鼎湖山地区一样下午出 现明显的峰值,这可能与2个地区NH4 在颗粒物中 NH₄NO, 形态存在,下午温度的升高则导致颗粒态 NH4NO, 向气态氨移动,从而导致 NH4 浓度降低, 而如果颗粒物中的 NH4 以更稳定的(NH4),SO4 形 态存在 NH 浓度则不会随温度上升而造成气态挥 发损失. 对观测期间 NH_4^+ 和 SO_4^{2-} 、 NO_5^- 进行相关 性分析,由图 3 可见, NH_{4}^{+} 与 SO_{4}^{2-} 的相关性较好 $(R^2 = 0.80)$,而 NH_4^+ 与 NO_3^- 的相关性稍差 $(R^2 =$ 0.56) "同时 NH_4^+ 与 SO_4^{2-} 回归直线的斜率为 0.38 , 小于 $(NH_4)_2SO_4$ 的摩尔比率 0.50 ,这说明 SO_4^{2-} 被 完全中和生成 $(NH_4)_2SO_4$,过剩的 NH_4^+ 再与 NO_3^- 、 Cl 等结合[25]. 上述结果说明鼎湖山地区秋季 PM, 中的 NH』主要以硫酸盐、硝酸盐和氯盐等的形式 存在.

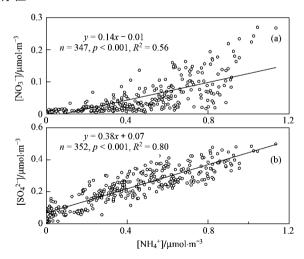


图 3 NH_4^+ 与 SO_4^{2-} 、 NO_3^- 摩尔浓度的相关性

Fig. 3 Relativity of the molar concentrations of $\rm NH_4^{~+}$, $\rm SO_4^{2~-}$ and $\rm NO_3^{-}$ in $PM_{2.5}$

2.3 $PM_{2.5}$ 及 $PM_{2.5}$ 中二次无机组分来源分析 为了进一步对鼎湖山地区 $PM_{2.5}$ 及 $PM_{2.5}$ 中二次 无机组分的主要来源进行分析 ,本研究利用主成分

分析方法研究影响 PM、及其二次无机组分浓度变 化的主要因子^[26]. 选取 $PM_{2.5}$ 、二次组分(SO_4^{2-} 、 NH₄ 和 NO₃)和相关气体(SO₂、NO、NO₂、O₃和 CO) 及气象要素(紫外辐射 相对湿度和温度)等 11 项观测要素的小时均值作为变量进行主成分分析. 表 3 列出通过主成分分析提取出 3 因子旋转后的特 征向量矩阵,从表3可以看出,前3个因子的特征值 分别为 6.02、2.57 和 1.20 ,总的方差贡献率达到 81.5% ,能够反映数据表中的绝大部分信息 ,因此可 以说影响鼎湖山地区大气细粒子及二次无机组分的 来源主要有3类.第1主因子中因子载荷值较大的 变量分别是 PM, 5、SO₄²⁻、NH₄⁺、NO₃⁻、CO、NO, 和 SO, 这些变量一般来自区域远距离传输的老化气 团^[24] ,因此第1主因子代表了区域输送对 PM_{2.5}及 其二次无机组分的贡献; 第2主因子中因子载荷值 较大的变量分别是 SO_4^{2-} 、 SO_2 、 O_3 、UV、t 和相对湿 度(RH) 其中 SO_4^{2-} 和 SO_3 与 O_3 、UV和t呈正相关 关系, 而与 RH 呈负相关关系, 说明第2 主因子与硫 酸盐的二次生成有关; 第3主因子与 CO 和 NO 呈正 相关关系,代表本地一次排放源的贡献,而 0,与 NO 之间呈现的负相关关系说明鼎湖山地区 O, 浓 度主要受 NO 滴定效应的控制[27]. 比较这三类因子 的方差贡献,第1主因子的方差贡献为50.1%,说 明观测期间鼎湖山地区大气细粒子及其二次无机组 分浓度的变化主要受区域输送的影响,与此同时第 2 主因子的方差贡献为 21.5% ,说明本地的二次硫 酸盐的生成对大气细粒子也有重要贡献. 第3主因 子的方差贡献为 10.0% 说明本地一次排放对大气 细粒子的贡献较小.

表 3 主成分分析因子载荷表

Table 3 Factor loading from principal component analysis

项目	因子 1	因子 2	因子3
PM _{2.5}	0. 92	0. 10	- 0. 09
NO_3^-	0.84	0.04	0. 25
SO_4^{2-}	0.84	0.38	-0. 07
NH ₄ ⁺	0. 90	0. 15	-0. 05
CO	0.77	-0.31	0. 33
NO	0. 23	0.08	0.85
NO_2	0.86	0.18	0. 18
O_3	0. 20	0.70	-0. 57
SO_2	0.74	0.42	0. 22
UV	0.03	0.79	0. 33
RH	-0.02	-0. 92	0. 14
t	0.49	0.78	0.03
特征值	6. 02	2. 57	1. 20
方差贡献/%	50. 13	21. 45	10. 00

利用 Hysplit-4 传输、扩散模式进行空气质点轨 迹模拟分析结果可追踪观测点周边污染源分布及其 影响过程[28 29]. 本研究利用 Hysplit-4 轨迹模式结合 聚类分析追溯了观测期间 PM25及其二次无机组分 的可能源区 结果表明: 观测期间到达鼎湖山地区近 地面的气团主要有 4 类 ,其中 68% 的气团来自于鼎 湖山地区的偏东方向(图4中的第2类气团),途径 的主要区域为汕头、惠州、广州等工业污染比较严重 的地区,另外3类气团主要来自观测点的东北及偏 北方向,从珠三角地区空气污染物的区域分布来看, 此区域空气污染物的排放较低,空气比较清洁[30]. 对 4 类气团中 PM, 、、SO₄ 、NH₄ 、NO₃ 、SO, 和 NO,的平均浓度进行统计发现(表4),第2类气团 中这6类污染物的浓度显著高于其它3类气团(P < 0.05), PM, $_{5}$ 和二次无机组分(SO_{4}^{2-} 、 NH_{4}^{+} 和 NO₃)的浓度分别比其它 3 类气团的平均浓度高 1.7、1.2、2.4 和 2.5 倍 ,说明观测期间来自观测点

偏东方向广州、惠州等城市大气污染物的远距离输送 是鼎湖山地区大气细粒子及其二次无机组分浓度升 高的主要原因 这与前面主成分分析的结果一致.

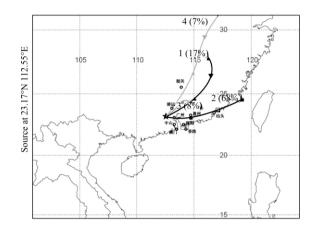


图 4 观测期间鼎湖山地区后向轨迹经过的区域示意

Fig. 4 Air mass backward trajectories from Oct 24 to Nov 8 , 2008 at Mount Dinghu

表 4 观测期间经过鼎湖山地区的 4 类气团中 $PM_{2.5}$ 、 SO_4^2 、 NH_4^+ 、 NO_3^- 、 SO_2 和 NO_2 的平均浓度统计 $^{1)}$ / μ g * m $^{-3}$

Table 4	Average concentrations of $PM_{2.5}$, SO_4^{2-} , NH_4^+ , NO_3^- , SO_2 and NO_2 under four kind of air
	mass reached Mount Dinghu during the sampling period/µg·m ⁻³

气团类别	$PM_{2.5}$	SO ₄ -	$\mathrm{NH_4}^+$	NO_3^-	SO_2	NO_2
1	55. 5(23. 5) ^a	16. 3(6. 4) ^b	3.7(3.0) a	0.7(0.5) a	6. 5(3. 8) a	7. 2(1. 6) ^a
2	91. 3(52. 1) b	22.7(11.3) °	8.4(4.9) b	3.3(3.2) b	15. 4(14. 5) ^b	13. 4(7. 0) ^b
3	27. 9(36. 6) ^a	8.7(14.3) ab	2.5(4.7) a	1.5(2.7) ab	7. 6(10. 7) ab	5.7(4.8) a
4	19. 5(12. 7) ^a	6.6(1.6) ^a	1.2(1.5) a	0.6(0.3) a	1.6(1.1) a	4. 3(1.6) a

1) 括号内的数据为标准差 同一列中不同字母标记的数字表示差异达到显著性水平(P<0.05)

3 结论

- (1) 鼎湖山地区秋季 $PM_{2.5}$ 中二次无机组分 SO_4^{2-} 、 NH_4^+ 和 NO_3^- 的浓度之和超过 $PM_{2.5}$ 质量浓度 的 1/3 ,二次无机粒子已成为鼎湖山地区大气细粒子的主要组成.
- (2) $PM_{2.5}$ 、 SO_4^{2-} 和 NH_4^+ 均呈现 "双峰型"分布的日变化特征 NO_5^- 则呈 "单峰型"分布; SO_4^{2-} 主要由 SO_5 转化而来 ,而 NO_5 的二次转化率较低.
- $(3) \text{ PM}_{2.5}$ 中 NH_{4}^{+} 主要以硫酸盐、硝酸盐和氯盐的形式存在.
- (4) 鼎湖山地区大气细粒子浓度受区域污染输送的影响,来自广州、惠州等城市空气污染物的远距离输送是影响 PM_{2.5} 及其二次无机组分浓度变化的主要原因,另外鼎湖山地区本地二次硫酸盐的生成也对大气细粒子有重要贡献,而本地一次排放的贡献较小.

致谢: 感谢中国科学院华南植物园鼎湖山观测站的孟泽等工作人员在实验过程中给予的帮助.

参考文献:

- [1] Chan Y C Simpson R W Mctainsh G H et al. Characterization of chemical species in PM_{2.5} and PM₁₀ aerosols in Brisbane, Australia [J]. Atmospheric Environment, 1997, 31(22): 3773-3785.
- [2] 汪安璞. 大气气溶胶研究新动向[J]. 环境化学,1999,18 (1):10-14.
- [3] Zhang Y H, Hu M, Zhong L J, et al. Regional integrated experiments on air quality over Pearl River Delta 2004 (PRIDE– PRD2004): overview [J]. Atmospheric Environment, 2008, 42 (25):6157-6173.
- [4] 刘燕, 贺克斌, 时宗波, 等. 珠江三角洲大气颗粒物研究进展 [J]. 环境保护科学 2005, 32(5):1-4.
- [5] Andreaea M O Schmida O Yang H et al. Optical properties and chemical composition of the atmospheric aerosol in urban Guangzhou , China [J]. Atmospheric Environment , 2008 , 42 (25):6335 - 6350.

- [6] 牛彧文 何凌燕 胡 敏 ,等. 深圳冬、夏季大气细粒子及其二次组分的污染特征[J]. 中国科学 B 辑: 化学 ,2006 ,36(2): 173-180.
- [7] Li Y C, Yu J Z. Composition profile of oxygenated organic compounds and inorganic ions in PM2.5 in Hong Kong [J]. Environmental Chemistry 2010 7:338-349.
- [8] Hagler G S W ,Bergin M H ,Salmon L G ,et al. Source areas and chemical composition of fine particulate matter in the Pearl River Delta region of China [J]. Atmospheric Environment ,2006 ,40 (20):3802-3815.
- [9] Wen T X ,Wang Y S ,Chang S Y ,et al. On-line measurement of water-soluble ions in ambient particles [J]. Advances in Atmospheric Sciences 2006 23(4):586-592.
- [10] 刘子锐 孙扬 李亮 等. 2008 奥运和后奥运时段北京大气颗粒物质量浓度和数浓度比对研究[J]. 环境科学,2011,32(4):913-923.
- [11] Sun Y ,Wang L L ,Wang Y S ,et al. In situ measurement of NO , NO₂ , NO_y , and O₃ in Dinghushan (112E ,23N) , China during autumn 2008 [J]. Atmospheric Environment ,2010 ,44 (17): 2079–2088.
- [12] Draxler R R, Rolph G D. HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) Model access via NOAA ARL READY Website (http://www.arl.noaa.gov/ready/hysplit4.html) [EB/OL]. Silver Spring, MD: NOAA Air Resources Laboratory, 2003.
- [13] Pathak R K, Yao X H, Lau A K H, et al. Acidity and concentrations of ionic species of PM_{2.5} in Hong Kong [J]. Atmospheric Environment 2003 37(8):1113-1124.
- [14] Tang G Q ,Li X ,Wang Y S _{et al.} Surface ozone trend details and interpretations in Beijing 2001–2006 [J]. Atmospheric Chemistry and Physics 2009 9(22):8813–8823.
- [15] So K L ,Guo H ,Li Y S. Long-term variation of PM_{2.5} levels and composition at rural , urban , and roadside sites in Hong Kong: Increasing impact of regional air pollution [J]. Atmospheric Environment 2007 A1(40):9427-9434.
- [16] Nie W ,Wang T ,Gao X M ,et al. Comparison among filter-based , impactor-based and continuous techniques for measuring atmospheric fine sulfate and nitrate [J]. Atmospheric Environment 2010 44 (35): 4396-4403.
- [17] Fan S J , Wang B M , Tesche M , et al. Meteorological conditions and structures of atmospheric boundary layer in October 2004 over Pearl River Delta area [J]. Atmospheric Environment ,2008 ,42 (25):6174-6186.

- [18] Hu M ,Wu Z J ,Slanina J et al. Acidic gases , ammonia and water-soluble ions in PM_{2.5} at a coastal site in the Pearl River Delta , China [J]. Atmospheric Environment ,2008 ,42 (25): 6310-6320.
- [19] Xu J ,Bergin M H ,Yu X ,et al. Measurement of aerosol chemical , physical and radiative properties in the Yangtze delta region of China [J]. Atmospheric Environment 2002 36(2):161-173.
- [20] 赵亚南,王跃思,温天雪,等. 贡嘎山大气气溶胶中水溶性无机离子的观测与分析研究[J]. 环境科学 2009, 30(1):9-13.
- [21] Seinfeld J H ,Pandis S N. Atmospheric chemistry and physics-from air pollution to climate change [M]. New York: John Wiley & Sons 1998.
- [22] Sander S P , Seinfeld J H. Chemical kinetics of homogeneous atmospheric oxidation of sulfur dioxide [J]. Environmental Science & Technology ,1976 ,10(12):1114-1123.
- [23] Wang Y ,Zhuang G S ,Zhang X Y ,et al. The ion chemistry , seasonal cycle , and sources of PM_{2.5} and TSP aerosol in Shanghai [J]. Atmospheric Environment 2006 A0 (16): 2935–2952.
- [24] Zhou Y , Wang T , Gao X M , et al. Continuous observations of water-soluble ions in PM_{2.5} at Mount Tai (1534 ma. s. l) in central-eastern China [J]. Journal of Atmospheric Chemistry , 2010 , doi: 10.1007/s10874-010-9172-z.
- [25] 邓利群 李红 ,柴发合 ,等. 北京市东北城区冬季大气细粒子与相关气体污染特征[J]. 中国环境科学 ,2010 ,**30**(7):954-961.
- [26] Buhr M, Sueper D, Trainer M, et al. Trace gas and aerosol measurements using aircraft data from the North Atlantic Regional Experiment (NARE 1993) [J]. Journal of Geophysics Research, 1996, 101 (D22): 29013-29027.
- [27] So K L ,Wang T. On the local and regional influence on ground–level ozone concentrations in Hong Kong [J]. Environmental Pollution 2003 ,123(2):307-317.
- [28] 徐祥德 周秀骥 施晓晖. 城市群落大气污染源影响的空间结构及尺度特征[J]. 中国科学 D 辑:地球科学 2005 35(增刊 I):1-19.
- [29] Song Y ,Miao W J ,Liu B ,et al. Identifying anthropogenic and natural influences on extreme pollution of respirable suspended particulates in Beijing using backward trajectory analysis [J]. Journal of Hazardous Materials 2008 ,154(1-3):459-468.
- [30] Zheng J Y Zhang L J Che W W et al. A highly resolved temporal and spatial air pollutant emission inventory for the Pearl River Delta region, China and its uncertainty assessment [J]. Atmospheric Environment 2009 43(32):5112-5122.