鼎湖山马尾松林生态系统碳素 分配和贮量的研究

方运霆, 莫江明*

(中国科学院华南植物研究所鼎湖山森林生态系统定位研究站,广东肇庆鼎湖 526070)

摘 要: 鼎湖山马尾松林中, 马尾松各器官碳含量平均为 54.46%, 灌木层植物 48.10%, 草本层植物 40.21%, 地表现存凋落物层 54.40%, 以上各组分总平均为 49.29%。 土壤碳密度为 7.37~kg·m²(深 100~cm)。 生态系统各组分碳贮量分别为: 乔木层 68.876~t·hm², 林下植物层 6.030~t·hm², 凋落物层 5.892~t·hm², 土壤层 73.705~t·hm²。根据研究结果, 还对广东省马尾松林的现有碳贮量和碳吸存潜力进行了估算和讨论。

关键词: 马尾松林; 鼎湖山; 碳分配; 碳贮量; 碳吸存潜力

中图分类号: 0 948 文献标识码: A 文章编号: 1000-3142(2002)04-0305-06

Study on carbon distribution and storage of a pine forest ecosystem in Dinghushan Biosphere Reserve

FANG Yun-ting, MO Jiang-ming*

(Dinghushan Forest Ecosystem Research Station, South China Institute of Botany, A cademia Sinica, Zhaoqing 526070, China)

Abstract: Carbon distribution and storage of a pine forest ecosystem in D inghushan B iosphere Reserve w as studied Results indicated that the average carbon content in different layers was in the following order: trees (54.46%) > standing litters (54.40%) > shrub (48.10%) > herb (40.21%). The carbon density in soil(to 100 cm) was $7.37 \text{ kg} \cdot \text{m}^{-2}$. Carbon storages in each component of the ecosystem were: $68.876 \text{ t} \cdot \text{hm}^{-2}$ (tree layer), $6.030 \text{ t} \cdot \text{hm}^{-2}$ (understory layer), $5.892 \text{ t} \cdot \text{hm}^{-2}$ (standing litter), $73.705 \text{ t} \cdot \text{hm}^{-2}$ (soil layer), respectively. In addition, the total standing carbon storage and sequestration potential of the pine forest in Guangdong Province was estimated and discussed in this paper.

Key words *P inus m assoniana*; D inghushan; carbon distribution; carbon storage; potential of carbon sequestration

在引起"温室效应"的气体中, CO_2 是其中的主 要成分, 其贡献率达 50% [1]。 近代由于人类活动诸

收稿日期: 2001-07-02

作者简介: 方运霆(1976-), 男, 江西瑞昌人, 在读硕士生, 生态系统生态学专业。* 为通讯作者

基金项目: 国家自然科学基金重大项目(39899370); 中国科学院知识创新项目(KZCX 2-407); 中国科学院留学经费择优支持回国工作基金。

如大量使用石化燃料及森林土地利用改变等不断 加强, 大气中 😋 🔅 浓度剧增, 其浓度已由工业革命 前之 280 mg/L, 而且目前 每年仍以 0.5 mg/L 的速度快速增加²¹。为了使大气 的温室气体含量稳定在目前的水平, 需要大幅度地 减少其排放量(约降低 60% 或更多) [3], 这也是世界 各国已达成的共识和面临的主要挑战之一。CO2是 一种可受人为控制的最重要的温室气体。因为植物 在光合作用生产有机物过程中吸收一定量的CO2、 所以大气中CO2浓度可通过森林管理来降低。这些 管理措施主要有 3 种: (1) 减少采伐森林 改变现有 的采伐体制和保护森林,以保存现有的森林碳库; (2) 增加天然林 人工林和农林复合林面积或森林 碳密度以扩大碳库: (3) 把生物碳转化为生物燃料 以替代石化燃料或长寿命的木材产品以转移碳 库^[4,5]。马尾松(P inus m assoniana)是我国松属树种中 分布最广的一种, 也是我国亚热带东部湿润地区典 型的针叶树乡土树种,分布于广东、广西等十四省 (区)。目前,马尾松林的面积居全国针叶林的首位, 然而, 由于多种原因, 如疏于对松林的抚育管理, 或 因农村燃料的缺乏而过度的修枝和割去林下层植 物等人为干扰活动, 这些马尾松林未能充分发挥其 生态效益(包括降低大气中CO2浓度)作用^{6,7}。国外 对通过森林资源管理和造林等行为带来的碳吸存 (Carbon sequestration)效益研究较多 [8-10], 而我国在 这方面研究报道较少[11,12]。就人工林而言,目前仅李 国忠等对台湾杉人工林和陈楚莹等对杉木人工林 有关碳贮量和吸存潜力进行了些研究[12,13], 而对于 马尾松林的情况还未见报道。本文目的以鼎湖山马 尾松林为例, 研究马尾松林生态系统碳素分配和贮 量情况, 为马尾松林管理提供科学依据。

1 样地概况

本研究在鼎湖山生物圈保护区进行。保护区位于广东省盅部,112 33 E,23 10 N。该区气候具有明显的季风性,年平均降雨量为1 927 mm,其中75%分布在3月到8月间,而12月到次年2月仅占6%。年平均相对湿度为80%。年平均温度为21.4 仓,最冷月(1月)和最热月(7月)的平均温度分别为12.6 仓和28.0 仓[14]。

马尾松林样地位于保护区东南角缓冲带, 由政

府林场于 1930~ 1950 年间营造。在过去(10 年前),允许当地农民砍小树和收割林下层作为薪柴。马尾松林密度为平均 700 株/hm², 胸径平均值为 15.4 cm。林下层植物稠密,以桃金娘(R hod on y rtus ton entosa)、岗松(B aechea f rutescens)等为优势。 样地的母岩为沙岩,土壤为砖红壤性红壤,pH 值在 4.5~ 5.0之间。土层深度一般较浅^[15]。

表 1 灌木层植物器官碳含量1)

Table 1 Carbon contents of different plants organ in shrub layer

植物名称 Species	根(%) Roots	叶(%) Leaves	枝干(%) Branch+ stemwoods
变叶榕 Ficus variolosa	39.448	57.386	47.612
岗松B aecra f rutescens	50. 292	_	32. 158
鬼灯笼 Cleridend ron f ortunatum	38. 656	40. 248	63. 122
九节 P sy chotria rubra	58.462	56. 265	39. 831
三叉苦 E rld ia rubra	43.080	59.417	55.870
山苍子L itsea cubeba	41.818	40.706	60. 165
桃金娘Rhodanyrtus tamentosa	38.582	56. 594	48. 907
五指毛桃 Ficus hirta	45.012	47.092	47.372
野牡丹M elastom a candidum	38.843	38.893	31. 175
玉叶金花M ussaenda pubesces	40.516	52.714	54. 796
平均值M ean	43.471 (2.027)	44. 931 (5. 567)	48. 101 (3. 475)

¹⁾括号内为标准误 SE in parentheses

表 2 草本层主要植物碳含量1

Table 2 Carbon contents of different plants in herb layer

植物种 Species	地上部分(%) A boveground	地下部分(%) Underground
乌毛蕨B lechnum orientale	37.631	40. 565
双唇蕨 S ch iz olom a ensif olium	36.883	36.300
铁线蕨A d iantum cap illus	48.863	34.085
芒萁D icranoperis d ichotam e	47.947	38.927
山管兰D ianella ensif olia	44. 169	43.927
其它草本植物Others	38.660	34.632
平均值M ean	42. 359 (2. 182)	38.073(1.550)

¹⁾括号内为标准误 SE in parentheses

2 材料和方法

2.1 生物量测定

设置 20 个 10 m × 10 m 的样方, 调查样方内马尾松的胸径和树高, 根据马尾松叶、干、枝和皮生物量的回归公式计算其生物量, 根生物量按占总量的17.01% 计算^[16]。在每样方里设置 1 个 1 m × 1 m 小样方, 全收获林下植物和地表现存凋落物。随机选取 9 个点, 挖取一定体积(30 cm × 30 cm × 50 cm)的

土壤, 收集其根系, 以测定灌木层和草本层根系生 物量和碳含量。

2.2 样品采集和处理

在林内分层分种采集植物各器官。马尾松分 根、干、枝、皮和叶;灌木层10个主要种分根、枝干和 叶; 草本层 6 个主要种分地上和地下部分; 地表现存

凋落物层分未分解和半分解层, 共计样品 74 个。在 样地外围随机挖取土壤剖面 5 个, 分 0~ 10 cm、10 ~ 20 cm、20~ 40 cm 和 40~ 100 cm 四层采样, 样品 20 个。植物样品烘干, 磨粉。土壤样品风干, 磨粉, 过 筛(孔径为2mm)。本研究结果以105 C 恒重为基 准

表 3 鼎湖山马尾松林生态系统各组分碳贮量"

Table 3 Carbon storage in each components of the pine forest ecosystem in Dinghushan

组分 Components	生物量 B iom ass (t·hm ⁻²)	容重 Bulk density (g·cm ⁻³)	碳含量 Carbon content (%)	碳贮量 Carbon storage (t·hm ⁻²)
乔木层 Trees				
¶+Leaves	2. 844	-	44. 627	1.269
∓Woods	66.728	-	61.380	40. 958
枝Branches	19. 851	-	53.328	10.586
皮Barks	7. 920	-	53.852	4. 265
根Roots	19. 952	-	59. 134	11.798
小计 Subtotal	117. 294	-	-	68.876(44.58)
林下植物层Understory plant				
灌木地上部分Aboveground of shrub	6.020	-	45.501	2.739
草本地上部分Aboveground of herb	2. 924	-	42. 359	1.239
灌木、草本地下部分Underground of shrub and herb	5.160	-	39.776	2.052
小计 Subtotal	14. 104	-	-	6.030(3.90)
地表现存凋落物 Standing litters				
未分解 Fresh	4. 859	-	57.784	2.808
半分解Decomposing	6.045	-	51.017	3.084
小计 Subtotal	10. 904	-	-	5.892(3.81)
土壤层 Soil layers				
0~ 10 cm	-	1.260	1.713	21.583
10∼ 20 cm	-	1.422	0. 556	7.909
20~ 40 cm	-	1.382	0. 439	12. 142
40∼ 100 cm	-	1.496	0. 357	32.071
小计 Subtotal	-	-	-	73.705 (47.71)
总计 Total	-	-	-	154.503

¹⁾括号里为生态系统各组分碳贮量占总量的百分比(%) Carbon storage percentage of subtotal to total in parentheses

表 4 广东省及全国马尾松林植被部分碳吸存潜力的

Table 4 Potentiality of carbon sequestration of the pine forest in Guangdong Province

区域 Region	面积 A rea (10 ⁴ hm ²)	蓄积量Volume (10 ⁶ m³)	生物量 B iom ass (10 ⁶ t)	现有碳贮量 Standing carbon storage(10 ⁶ t)	潜在碳贮量 Potential carbon storage(10 ⁶ t)
全国Whole country	1 300. 85	407.19	211.74	138. 58 ²⁾	812. 25 ²⁾
广东省 Guangdong Province	-	-	-	-	-
公益林 Non-industrial forests	103.66	30. 19	15.70	8. 63	71.39
商品林Commercial forests	247.46	82. 56	42.93	23.61	170.43
小计 Subtotal	351. 12 (26. 99)	112.75(27.69)	58. 63 (27. 69)	32. 25 (23. 27)	241.82(29.77)

¹⁾括号里为广东占全国的比例(%) Ratio of Guangdong to whole country in parentheses(%).
2)数据引自王效科等^[12] Data is quoted from W ang Xiaoke, *et al* [12].

2.3 土壤容重的测定

采用土壤环刀法,分4个层次分别测定土壤容

所有样品均采用重铬酸钾外加热法测定有机

碳含量。样品碳含量指有机碳含量.下同。

2.4 样品碳含量测定

3 结果与分析

3.1 碳含量

3.1.1 植物碳含量 在马尾松林中, 乔木层马尾松碳含量平均值为 54.46%, 其中干最高 61.38%, 叶含量最低 44.63%, 其它器官的排序依次为根 (59.134%)>皮(53.852%)>枝(53.328%)。灌木层植物叶、枝干和根的含量分别在 38.893%~59.417%、 31.175%~ 63.122%和 38.582%~58.462%间, 其中叶片以三叉苦(Erldia rubra)的含量 (59.417%)、枝干部分以鬼灯笼(Cleridend ronfortunatum) 63.12%、根以九节(Psychotria rubra) 58.46%最高。灌木层植物枝干、叶和根碳含量平均值相差不大,分别为 48.101%、44.931%、43.471%(表 1)。草本层地上和地下部分碳含量为 42.359%和 38.073%, 不同种间碳含量差异小, 地上与地下变异系数分别为 12.618%和 9.974%(表 2)。

3.1.2 地表现存凋落物碳含量 地表现存凋落物中未分解部分碳含量为 57.784%, 半分解部分为51.017%。 可见, 处于半分解状态凋落物的碳含量明显低于未分解凋落物的碳含量。

3.1.3 土壤碳含量 土壤碳含量由表层向深层依次降低,0~20 cm 层碳含量降低最快,0~10 cm 层是40~100 cm 层的4.79 倍,20~100 cm 层间变化较缓慢(图1)。土壤容重平均为1.39 g·cm³,各层次间变化较小(变异系数仅为7.1%)。根据表3所示的容重和有机碳含量得出0~10,10~20,20~40 cm 和40~100 cm 土层的碳密度分别为2.158 3、0.790 9、0.607 1 和0.534 5 kg·m²。0~10 cm 层的碳密度最高,约是10~20 cm 层的3 倍、40~100 cm 层的4倍,20~100 cm 层碳密度变化小。可见,土壤碳密度与碳含量变化相类似,随深度增加而明显递减。由此可以推断土壤碳密度变化主要受土壤碳含量变化影响。

总的来看, 马尾松林生态系统各组分碳含量有较强的层次规律。在地上部分, 其碳含量平均值变化规律表现为: 乔木层> 地表现存凋落物层> 灌木层> 草本层。在地下部分(根), 表现为乔木层> 灌木层> 草本层。就同一种植物而言, 无论在乔木层, 还是在灌木层, 植物碳含量一般表现为: 枝干部分> 根> 叶。

3.2 碳贮量

马尾松林乔木层的碳贮量为 $68.876 \text{ t} \cdot \text{hm}^2$, 其中树干占较大的比例, 达 59.47%, 如果把树干和枝条加在一起, 则占 74.84%。 叶的比例最小, 仅占 1.84%。 林下植物层(灌木和草本) 碳贮量为 $6.03 \text{ t} \cdot \text{hm}^2$, 地表现存凋落物层碳贮量为 $5.89 \text{ t} \cdot \text{hm}^2$, 0 ~ 100 cm 土壤碳贮量为 $73.705 \text{ t} \cdot \text{hm}^2$, 其中 0~ 10 cm 层碳贮量占土壤层总量的 29.3%, 20 cm 占 70.7% (表 3)。

鼎湖山马尾松林生态系统总碳贮量为 154.503 $t \cdot hm^{-2}$, 其中土壤碳贮量占 47.7%。 尽管地表现存凋落物层的贮量不大, 只有 $5.89~t \cdot hm^{-2}$, 占总量 3.8%, 但却是土壤有机碳的主要来源, 而且能覆盖地面, 阻止土壤的碳流失(表 3)。

4 讨论

4.1 鼎湖山马尾松林碳贮量

对于地上部分碳,目前在许多情况下是把干物质按 45% (12,17,18)或 50% (11,19,20)的转换率转换成有机碳来计算。本研究通过实测,乔木层马尾松各器官碳含量平均值为 54.46%,与湖南会同 20 年生杉木各器官的碳平均含量 54.10% (13)、江苏南部火炬松54.5%接近(21),高于江苏南部杉木51.0%和橡木(O riental oak) 49.9% (21)。从本研究的整个植被(包括了林下植物和地表现存凋落物)来看,碳含量平均值为 49.29%,此值与50%接近。但若根据各组分碳含量和生物量比例,则得出马尾松林生态系统植被碳含量为56.78%,这个值高于目前大多数人采用的转换率(45%和50%)。以上分析除了反映不同的树种间,其碳含量有差异外,还说明了本文在估算广东省马尾松林碳贮量(表4)时采用的碳含量值(55%)是较为合理的。

沈承德等曾对鼎湖山土壤有机碳含量进行了测定,有机碳含量在表层至 20 cm 层,变化迅速, 20 ~ 60 cm 层,变化缓慢; 60~ 160 cm 层,变化甚微⁽²²⁾,本研究结果与这种变化趋势相类似(图 1)。另外与沈承德等研究样地比较,马尾松林样地土层浅得多,因此估测土壤有机碳库时,本文按土壤深100cm 取样,基本上包括土壤的碳库,这也符合目前国际上估测土壤有机碳库常用的土壤深度⁽²³⁾。

鼎湖山马尾松林植被碳贮量为 80.798 t·

hm⁻², 高于马尾松林全国平均水平 62.44 t·hm⁻²(碳 含量以 45% 计) [12] 和热带亚热带针叶林平均水平 63.7 t·hm⁻²(碳含量以 50% 计)^[24], 高于暖性针叶 林平均水平 53.52 t·hm^{-2 [25]}。 其原因主要有 3 方 面: (1) 本研究松林的林龄(林龄约为 50~ 70 a) [6,7] 远高于以上松林平均林龄(20~ 30 a) [24,25]; (2)他们 采用的碳含量系数较低(45%或 50%);(3)本研究 马尾松林中植被碳贮量包括了林下植物和地表现 存凋落物, 而他们估算的碳贮量其中有些未包括以 上两部分^[12, 24, 25]。 然而, 土壤有机碳贮量 73.71 t· hm⁻²却大大低于尖峰岭热带森林土壤 102.60 t· hm⁻²(土壤深以 100 cm 计)^[26]、我国东部地区红壤的 平均水平 101.8 t·hm⁻²⁽²⁷⁾和暖性针叶林地平均值 110.30 t·hm⁻²⁽²⁵⁾,说明了鼎湖山马尾松林土壤碳 贮量低。原因可能与人为干扰,如割草、采集枯枝落 叶、修枝和割松脂等,致使林分产量不高、林地常出 现退化现象有关 [6,7,16]。 莫江明等曾量化了人为干扰 收割林下层植物和凋落物的作用规模, 如作用频 度、物理强度等[6,7],这种活动每年从马尾松林中带 走了 2.4t·hm⁻²的林下层生物体和 0.9 t·hm⁻²的凋 落物, 折合碳为 1.05 t·hm²和 0.49 t·hm², 即每 年向土壤层输入碳量减少了 1.54 t·hm⁻²碳。

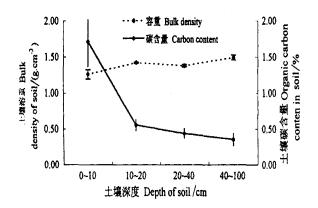


图 1 土壤各层次碳含量和容重比较 (误差线为标准误, n=5)

Fig 1 Differences of carbon content and bulk density in soil layers (Vertical lines in all figures represent SE, n= 5)

4.2 广东省马尾松林现有碳贮量和碳吸存潜力

在森林植被潜在碳贮量估算中, 人们通常用当前的成, 过熟林的碳贮量来推测^[12]。 本研究的马尾松林为成熟林(林龄约为 50~70 a) ^[6,7], 所以在一定程度上能代表广东省马尾松林潜在的碳贮量。 根据

广东省马尾松林分布面积和蓄积量^[28],利用蓄积量和生物量间关系(生物量= 蓄积量×0.52)^[29]和本研究结果,算得广东省马尾松林植被的现有碳贮量为0.3225t×10⁸t,潜在碳贮量为2.418t×10⁸t,碳吸存潜力为2.095t×10⁸t(表4)。如果植被以1t碳等于3.67tCO2计^[30],则折合成马尾松林植被CO2吸收潜力为7.689t×10⁸t。这结果意味着只要对现有马尾松林进行适当的保护和管理,按马尾松林轮伐期30a计,在30a后能再吸收7.689t×10⁸tCO2。而且,现有的马尾松成熟林按自然演替规律,向混交林演替,将有更大的碳吸存能力。从表4还可以得出广东省马尾松林现有碳贮量仅为潜在的13.33%,低于全国水平17.06%^[12]。可见,广东省马尾松林分布虽广,但林分质量不高,通过必要的林业管理措施,其碳吸存能力将会有很大的前景。

参考文献:

- [1] Rodhe A. Comparison of the contribution of various gases to the greenhouse effect [J]. Science, 1990, 248: 1 217- 1 219.
- [2] PCC. Climate change 1995: The science of climate change [M]. Cambridge, UK: Cambridge Univ. Press, 1996 572
- [3] Houghton R A, Skole D L Carbon. The earth as transformed by human action [A]. In: Turner B L, et al. eds. Cambridge University Press [C]. 1990. 393 408.
- [4] Dixon R K, Brown S, Houghton A M, et al. Carbon pools and flux of global forest ecosystem [J]. Science, 1994, 263: 185-190
- [5] Brown S. M. itigation potential of carbon dioxide em issions by management of forests in A sia[J]. AM B IO, 1996, 25(4): 273-278
- [6] 莫江明, Sandra brown, 孔国辉, 等 鼎湖山马尾松 林营养元素的分布和生物循环特征[J]. 生态学报, 1999, **19**(5): 635- 649.
- [7] Mo J M, Brown S, M T Leant, et al Nutrient dynamics of a human-impacted pine forest in a MAB reserve of subtropical China [J]. B iotropica, 1995, 27 (3): 290-304
- [8] Dixon R K, Winjum J K, Schroeder P E. Conservation and sequestration of carbon [J]. Global Environ Change, 1993, 3(2): 159-173

- [9] Yang S S Estimation of carbon dioxide assimilation of forests in Taiwan [J]. J B icm ass Energy Soc China, 1997, 16(1~2): 1-10
- [10] Sedjo R A. Forest to offset the greenhouse effect[J].

 Journal of forestry, 1989, 87(7): 12- 15.
- [11] 李国忠, 林俊成, 陈丽琴 台湾杉人工林碳吸存潜力及其成本效益分析[J]. 台湾林业科学, 2000, **15** (1): 115-123
- [12] 王效科, 冯宗炜 中国森林生态系统中植物固定大 气碳的潜力[J], 生态学杂志, 2000, **19**(4): 72-74
- [13] 陈楚莹,廖利平,汪思龙,等 杉木人工林生态系统 碳素分配与贮量的研究[J] 应用生态学报,2000, **11**(Supp.): 175-178
- [14] 黄展帆, 范征广. 鼎湖山的气候[J]. 热带亚热带森林生态系统研究, 1982, 1: 11-23
- [15] 何金海 鼎湖山自然保护区之土壤[J] 热带亚热带森林生态系统研究, 1982, 1: 25-38
- [16] 彭少麟, 李鸣光, 陆 阳 鼎湖山马尾松种群生物 生产量初步研究[J]. 热带亚热带森林生态系统研 究. 1989. 5: 75-81.
- [17] Whittaker R H, Likens G E Carbon in the biota [A]. In: Woodwell G, et al. Carbon and the biosphere National technical information service (CONF-720510) [C]. Springfield, Virginia, 1973 281-302
- [18] N iskanen A, Saastamo inen O, Rantanla T. Economic impacts of carbon sequestration in reforestation: examples from boreal and moist tropical conditions [J]. Silva Fennica, 1996, 30(2~3): 269-280
- [19] Brown S, Lugo A E. The storage and production of organic matter in tropical forests and their role in the global carbon cycle [J] *B iotropica*, 1982, **14**: 161 179.
- [20] 刘国华, 傅伯杰, 方精云, 中国森林碳动态及其对

- 全球碳平衡的贡献[J]. 生态学报, 2000, **20**(5): 733-740
- [21] Ruan H H, Jiang ZL, Gao SM. Preliminary studies on carbon cycling in three forest types in the hilly regions of southern Jiangsu province [A]. In: Chao Chison Forest and environment research and practice [C] Beijing: China Forestry Publishing House, 1996, 369-375.
- [22] 沈承德, 刘东生, 彭少麟, 等 鼎湖山自然保护区土壤 14C 测定及 14C 示踪初步研究[J] 科学通报, 1998, **43**(16): 1 775- 1 779.
- [23] W in G. Sombroek, Freddy O. Nachtergaele, Axel Hebel Amount, dynamics and sequestering of carbon in tropical and subtropical soil[J]. *AMB IO*, 1993, 22(27): 417-42
- [24] 王绍强, 周成虎, 罗承文, 等 中国陆地自然植被碳量空间分布特征探讨[J] 地理科学进展, 1999, 18 (3): 238-244
- [25] 周玉荣,于振良,赵士洞 我国主要森林生态系统 碳贮量和碳平衡[J] 植物生态学报,2000,**24**(5):518-522
- [26] 吴仲民,曾庆波,李意德,等 尖峰岭热带森林土壤 C 贮量和 CO₂ 排放的初步研究[J] 植物生态学报, 1997, **21**(4): 416- 422
- [27] 王绍强,周成虎,李克让,等 中国土壤有机碳库及 空间分布特征分析[J] 地理学报,2000,55(5):533-544
- [28] 周国逸, 闫俊华 生态公益林补偿理论和实践[M] 北京: 气象出版社, 2000, 97-99.
- [29] 方精云, 刘国华, 徐嵩龄 我国森林植被的生物量和净生产量[J] 生态学报, 1996, **16**(5): 497-508
- [30] Chris Borough 碳限额管理体系[R] 绿色经济及可持续发展国际研讨会, 2000, 6-8

(上接第 381 页 Continue from page 381)

Grahm) Stem -A New Source of Energy [J]. J. Pow-er Source, 1994, 47(1~2): 185-188

- [29] Zenteno, Edgar, Ochoa, Jose luis Cactus agglutinins
 A new resource of scientific and economic value [J].

 Ciencia (M ex icocity), 1989, 35(3): 153- 162
- [30] Zenteno, Edgar, Ochoa, Jose Luis Cacti lectins[J].

B iol B iochen clin B iochen. , 1985, $\mathbf{36}(4)$: 437-445.

[31] 王 钊, 林 琳, 鲍世铨 我国海南仙人掌的成分 分析及开发前景[J], 天然产物研究与开发, 2001, **13**(1): 44-48