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a  b  s  t  r  a  c  t

Because  of  China’s  large  size,  satellite  observations  are  necessary  for estimation  of the  land  surface  latent
heat  flux  (LE).  We  describe  here  a satellite-driven  Priestley–Taylor  (PT)-based  algorithm  constrained  by
the  Normalized  Difference  Vegetation  Index  (NDVI)  and  Apparent  Thermal  Inertia  (ATI)  derived  from
temperature  change  over  time.  We  compare  to  the satellite-driven  PT-based  approach,  PT-JPL,  and  vali-
date  both  models  using  data  collected  from  16  eddy  covariance  flux  towers  in  China.  Like  PT-JPL,  our
proposed  algorithm  avoids  the computational  complexities  of  aerodynamic  resistance  parameters.  We
run  the  algorithms  with  monthly  Moderate  Resolution  Imaging  Spectroradiometer  (MODIS)  products
(0.05◦ resolution),  including  albedo,  Land  Surface  Temperature  (LST),  surface  emissivity,  and  NDVI;  and,
Insolation  from  the  Japan  Aerospace  Exploration  Agency  (JAXA).  We  find  good  agreement  between  our
estimates  of monthly  LE and  field-measured  LE,  with  respective  Root  Mean  Square  Error  (RMSE)  and  bias

−2 −2
hina differences  of  12.5  W  m and  −6.4 W  m .  As  compared  with  PT-JPL,  our proposed  algorithm  has  higher
correlations  with  ground-measurements.  Between  2001  and  2010,  LE  shows  generally  negative  trends
in  most  regions  of  China,  though  positive  LE trends  occur  over 39%  of the  region,  primarily  in North-
east,  North  and  South  China.  Our  results  indicate  that  the  variations  of terrestrial  LE  are  responding  to
large-scale  droughts  and  afforestation  caused  by human  activity  with  direct  links  to  terrestrial  energy
exchange,  both  spatially  and  temporally.
. Introduction

Latent heat flux (LE) and evapotranspiration (ET) link the water,
arbon and energy cycles with ET absorbing more than half of total

ncoming terrestrial solar energy and returning more than 60% of
and precipitation back to the atmosphere (L‘vovich and White,
990; Trenberth et al., 2009; Liang et al., 2010; Jung et al., 2010;

∗ Corresponding author at: College of Global Change and Earth System Science,
eijing  Normal University, Beijing 100875, China. Tel.: +86 10 5880 3002.
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Mu  et al., 2011). In arid and semi-arid regions, such as those com-
prising a large portion of China, ET accounts for more than 70% of the
annual water balance (Gao et al., 2007). Accurate and temporally
continuous estimation of LE for China is critical for understand-
ing the interactions between the land surface and atmosphere,
and it is crucial for providing valuable means to efficient water
resource use (Meyer, 1999; Raupach, 2001; Wang et al., 2012;
Anderson et al., 2007; Yao et al., 2011a). Point LE observations are

available from the ChinaFlux project, but do not cover the het-
erogeneity of landscapes and complexity of physical ET processes
throughout China (Gash, 1987; Norman et al., 1995; Wang et al.,
2010a,b).

dx.doi.org/10.1016/j.agrformet.2012.11.016
http://www.sciencedirect.com/science/journal/01681923
http://www.elsevier.com/locate/agrformet
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Remote sensing has greatly improved large scale observation
f soil and vegetation dynamics, and has played an increasingly
mportant role in estimation of LE over heterogeneous landscapes
Zhang et al., 2008; Wang et al., 2010a,b,c). Inputs for remotely
ensed LE estimates generally consist of albedo, land surface tem-
erature (LST), leaf area index (LAI), vegetation indices (VI) and
ther meteorological ground observations. In the last two  decades,
everal satellite-based LE approaches have become available for
etermining different scale LE, including (1) empirical and semi-
mpirical methods (Jackson et al., 1977; Wang et al., 2007; Mueller
t al., 2011; Jin et al., 2011; Jung et al., 2010), (2) surface energy bal-
nce models (SEB) (Norman et al., 1995; Kustas and Norman, 1996),
3) Penman–Monteith (PM)-based (Monteith, 1965) approaches
Mu et al., 2007) and (4) Priestley–Taylor (PT)-based (Priestley
nd Taylor, 1972) approaches (Fisher et al., 2008). Empirical and
emi-empirical methods have been designed based on the sta-
istical relationships between ground-measured LE and a suite of
co-environmental parameters derived from satellite and ground
bservations (Jin et al., 2011). Although empirical methods are easy
o operate for mapping long-term ET in large-scale applications, the
mpirical coefficients may  vary from the different ecosystems and
equire further calibration.

Surface  energy balance LE methods are developed from the
urface energy budget. Among such models, One-source Sur-
ace Energy Balance (SEB) (Monteith, 1965), Two-source Surface
nergy Balance (TSEB) (Shuttleworth and Wallace, 1985), the
tmosphere–Land Exchange Inverse (ALEXI) model (Anderson
t al., 1997) and the Surface Energy Balance Algorithm for Land
SEBAL) (Bastiaanssen et al., 1998) all perform reasonably well for
oint LE or ET estimation. However, a longstanding limitation asso-
iated with these methods is that their aerodynamic and surface
esistances rely on some important variables, such as wind speed
r vapor pressure deficit (VPD), that are usually not available from
emote sensing data (Yao et al., 2011b).

To overcome the problems in the SEB models, Cleugh et al. (2007)
eveloped a remotely sensed LE model using a PM equation driven
y MODIS-derived vegetation data and daily surface meteorological

nputs. Subsequently, Mu  et al. (2007) and Zhang et al. (2009) fur-
her modified Cleugh et al.’s model to estimate the global ET (RS-ET)
ased on LAI and NDVI retrieved from remote sensing data. Cur-
ently, although the PM method can successfully produce MODIS
T products (Mu et al., 2011: MOD16), many parameters for calcu-
ating canopy and aerodynamic resistances still depend on ground

eteorological observations and reanalysis products.
The Priestley–Taylor equation can be considered a simplified

ersion of the more theoretical Penman equation that avoids the
alculation of the aerodynamic and surface resistance (Priestley and
aylor, 1972; Fisher et al., 2008; Jin et al., 2011; Miralles et al., 2011).
nputs for the PT equation include net radiation, ground heat flux,
nd air temperature. A coefficient multiplier, alpha, sets the equa-
ion equal to potential ET; some authors have changed the value
f alpha in an attempt to reduce potential ET to actual ET. Accu-
ate parameterization of this parameter is difficult because it varies
rom 0 (dry surface) to approximately 1.26 (wet surface) in different
egions and times of the year/day (Sumner and Jacobs, 2005). The
riestley–Taylor coefficient has been modified using the two-step
nterpolation scheme from the dry and wet edges in the LST-NDVI
riangular space (Jiang and Islam, 2001; Tang et al., 2010), eco-
hysiological constraints (Norman et al., 1995; Fisher et al., 2008;

in et al., 2011) or the parameterization of microwave-derived soil
oisture (Miralles et al., 2011). However, few of these approaches

ouple canopy interception evaporation with soil moisture condi-

ions, so parameterization schemes still need many variables, such
s relative humidity, soil moisture or precipitation, to improve the
omplexity of the models, and accumulated errors from too many
nput variables magnify the uncertainty of ET estimations.
ology 171– 172 (2013) 187– 202

In this study, to circumvent the difficulty of the satellite-based
estimation of relative humidity (RHD) and vapor pressure deficit
(VPD) for PT-JPL algorithm, we used the Apparent Thermal Inertia
(ATI) derived from the temperature (air temperature, Ta, or land
surface temperature, LST) change over time to replace RHD  and
VPD for calculating the soil moisture constraint. Our  proposed algo-
rithm only needs four variables, as follows: net radiation (Rn), air
temperature (Ta), diurnal temperature range (DT) and NDVI. Next,
we validated our method using ground-observed flux data from
16 flux towers in China and compared our method with the PT-JPL
model (Fisher et al., 2008). Finally, we  estimated the monthly LE in
China driven by MODIS products and analyzed the variations of the
terrestrial LE between 2001 and 2010.

2. Method and data

2.1.  Description of Priestley–Taylor LE algorithm

To overcome the uncertainty of the resistances in the
Penman–Monteith equation, Priestley and Taylor (1972) designed
a simple LE equation for radiation- and temperature-based equi-
librium evaporation by replacing the atmospheric demand with an
empirical coefficient (˛):

LE = ˛
�

� + �
(Rn − G) (1)

where  LE is the latent heat flux from the evapotranspiration pro-
cess in W m−2,  ̨ is the PT coefficient of 1.26 for a water body, � is
the slope of the saturated vapor pressure curve (kPa ◦C−1), and � is
the psychrometric constant (kPa ◦C−1). Rn and G represent the net
radiation and the soil heat flux in W m−2, which can be estimated
using satellite data and meteorological observations. In this paper,
we have calculated water evaporation using Eq. (1). Fisher et al.
(2008) developed a new method for downscaling potential LE from
Priestley–Taylor to actual LE based on ecophysiological constraint
functions driven by atmospheric moisture (VPD and RHD) and veg-
etation indices (normalized and soil adjusted vegetation indices,
NDVI and SAVI). The PT-JPL algorithm can be described as:

LE  = LEs + LEc + LEi (2)

LEs = [fwet + (1 − fwet)fsm]˛
�

� + �
(Rns − G) (3)

LEc = (1 − fwet)fcfT fM˛
�

� + �
Rnc (4)

LEi = fwet˛
�

� + �
Rnc (5)

where  fc is the green canopy fraction (fAPAR/fIPAR), fT is a plant
temperature constraint (exp(− ((Tmax − Topt)/Topt)2)), fM is a plant
moisture constraint (fAPAR/fAPARmax ), fsm is a soil moisture constraint
(RHDVPD) and fwet is the relative surface wetness (RHD4), fAPAR is
the absorbed photosynthetically active radiation (FPAR), fIPAR is the
intercepted PAR, Tmax is the maximum air temperature and Topt is
Tmax at max  (RnTmaxSAVI/VPD).

2.2. Modified satellite-based Priestley–Taylor LE model

Taken interception into account is crucial when making LE esti-
mates over large land masses because interception loss can be
responsible for the evaporation of approximately 13–22% of the

total LE in different forest biomes (Miralles et al., 2010). In our
model, the total latent heat flux, LE, is calculated as the sum of
the soil evaporation, the canopy transpiration, the wet  soil sur-
face evaporation and the canopy interception evaporation (Table 1).
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Table 1
Model parameters and equations for the modified satellite-based Priestley–Taylor LE model. � is the slope of the saturate vapor pressure curve, � is the psychrometric constant
(0.066 kPa ◦C−1),  ̨ = 1.26 (Priestley and Taylor, 1972), Topt = 25 ◦C (Fisher et al., 2008; Yuan et al., 2010), ag = 0.18 (Rouse, 1984; Halliwell and Rouse, 1987), NDVImax = 0.95
(Zhang et al., 2009), NDVImin = 0.05 (Zhang et al., 2009), DTaRmax = 40 ◦C (this study), DTsRmax = 60 ◦C (this study). For water body, G = 0.26Rn (Zhang et al., 2009).

Parameter Description Equation Reference

LE Latent heat flux LEs + LEc + LEic + LEws

LEc Vegetation transpiration (1 − fwet )fvfT ˛ �
�+�

Rnc This study; Priestley and Taylor, 1972; Norman et al., 1995; Fisher et al., 2008
LEs Soil evaporation (1 − fwet )fsm˛ �

�+�
(Rns − G) This study; Priestley and Taylor, 1972; Fisher et al., 2008

LEic Vegetation interception evaporation fwet˛ �
�+�

Rnc This study; Fisher et al., 2008
LEws Wet  soil surface evaporation fwet˛ �

�+�
(Rns − G) This study; Fisher et al., 2008

fv Fraction of green vegetation in the scene NDVI−NDVImin
NDVImax−NDVImin

This study; Zhang et al., 2009

fT Plant temperature constraint exp

[
−
(

Ta−Topt
Topt

)2
]

This study; Fisher et al., 2008; Yuan et al., 2010

fsm Soil moisture constraint
(

1
DT

)DT/DTmax
This study

fwet Relative surface wetness f 4
sm This study; Fisher et al., 2008
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added the temperature constraint, fT, with an optimum Topt set
at 25.0 ◦C, rather than dynamically calculated as in PT-JPL (Fisher
et al., 2008; Yuan et al., 2010). Another difference between our
modified vegetation transpiration algorithm and N95 model is that
G Soil heat flux agRn(1 − fv) 

Rnc Net radiation to the vegetation Rnfv
Rns Net radiation to the soil Rn(1 − fv) 

ur algorithm is driven by four variables: net radiation (Rn), air
emperature (Ta), diurnal temperature range (DT) and NDVI.

Soil  evaporation (LEs) follows PT-JPL and can be expressed as the
ollowing equation without interception evaporation.

Es = fsm˛
�

� + �
(Rns − G) (6)

In  the above equation, an index of soil water deficit, fsm, has been
esigned to constrain LEs based on the complementary hypothesis
f Bouchet (1963) whereby surface moisture status is linked to the
vaporative demand of the atmosphere (Fisher et al., 2008). The
urface tends to be in equilibrium with the overlying atmosphere
nd fsm is a good indicator of soil moisture over large enough spatial
nd temporal scales. Generally soil moisture is reflected in the vari-
tion of Apparent Thermal Inertia (ATI) and ATI relates the diurnal
emperature range (DT) (Price, 1985; Zhang et al., 2003; Wang and
iang, 2008). Thereby, it is possible to quantify fsm using an expo-
ential algorithm of ATI and fsm can be calculated from the following
quation:

sm = ATIk =
(

1
DT

)DT/DTmax

(7)

here  DT is the diurnal temperature range and ATI is the Apparent
hermal Inertia, which can be simplified as the inverted diur-
al temperature range (DT) (diurnal land surface temperature
ange, DTsR = LSTday − LSTnight or diurnal air temperature range,
TaR = Tmax − Tmin. Using DTsR and DTaR as inputs for our modi-
ed LE model, hereafter called PT-DTsR and PT-DTaR, respectively)
Wang and Liang, 2008; Zhang et al., 2003; Seneviratne et al.,
010). Using the simplified ATI (1/DT) alone assumes a linear
elationship with fsm, and our initial inspection indicates lower-
han-expected fsm at high DT and higher-than-expected fsm at
ow DT. Therefore, DT/DTmax has been selected as a k value to
arameterize fsm. DTmax, defining the relative sensitivity to the
ariation of DT, is the maximum diurnal temperature range and
s set as invariant constants (DTaRmax = 40 ◦C, DTsRmax = 60 ◦C) in
his paper. Given that fsm is an index scaled between 0 and 1, we
cale soil volumetric water (VWC,  m3 m−3) between 0 and 1 for
alidation and comparison. Thus relative extractable water (REW,
EW = (VWC  − VWCmin)/(VWCmax − VWCmin)) can be derived from
round-based VWC  (Fisher et al., 2008; Anderson et al., 2007). Fig. 1
hows the variation plot between fsm and REW from 0 to 20 mean
oil moisture at both the Shapotou (desert) flux tower and the
inghushan (forest) flux tower, which indicates that the fsm closely
ollows REW.
For  vegetation transpiration (LEc), we use the modified Lin-

ar Two-Source Model (N95) to estimate vegetation transpiration
Norman et al., 1995; Anderson et al., 1997; Fisher et al., 2008).
This study; Rouse, 1984; Halliwell and Rouse, 1987
This study; Mu et al., 2007, 2011
This study; Mu et al., 2007, 2011

Assuming  no canopy interception, the algorithm of vegetation tran-
spiration can be described as:

LEc = fvfT ˛
�

� + �
Rnc (8)

where  fv refers to the fraction of green vegetation in the scene and
it characterizes the variations of surface vegetation transpiration
amount because vegetation transpiration couples with CO2 assim-
ilation through the process of vegetation photosynthesis (Tucker,
1979; Norman et al., 1995; Wang et al., 2007). fv has been esti-
mated as a linear function of NDVI considering NDVI, determined
by the seasonal dynamics of vegetation, represents the variations in
vegetation state and canopy response to changes in environmental
conditions such as the plant water potential, FPAR and CO2 concen-
tration (Tucker, 1979; Zhang et al., 2010). Additionally, we have
Fig. 1. Comparisons of the smoothed fsm and relative extractable water (REW) from
0 to 20 mean soil moisture at (a) Shapotou (desert) flux tower, and (b) Dinghushan
(forest)  flux tower.
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ig. 2. The scatter plot between relative humidity (RHD) and fsm at 5 different biome
ypes  (R2 = 0.75).

he coefficient of Priestley–Taylor (a) of Eq. (8) is set as the invari-
nt constant 1.26 rather than 1.3 to keep the consistency with the
riginal Priestley–Taylor model.

For canopy interception evaporation (LEic), we follow PT-JPL, but
eplace fwet with f 4

sm due to the good agreement between fsm and rel-
tive humidity at 5 different biome types of China (daily, R2 ∼ 0.75,
ig. 2). Similarly, the wet soil surface evaporation (LEws) can also
e calculated based on f 4

sm. The detailed description of the modified
riestley–Taylor model is shown in Table 1.

.3. MODIS-based air temperature estimate

Air temperature is one of the core inputs for almost all LE mod-
ls. However, the density of the meteorological network is often too
parse and cannot provide a spatially distributed characterization

Zakšek and Homscheidt, 2009). Remote sensing detects thermal
ignals, including a mixture of land surface signals and air signals.
hus, air temperature can be derived from LST by correlating the
aily or monthly mean air temperature measured at meteorological

able 2
ocations of the 16 flux towers used in this study.

Name Lat, Lon Land cover Elevation (m

Dongsu (DS), Inner Mongolia 44.09◦N, 113.57◦E Desert steppe 970 

Jinzhou  (JZ), Liaoning 41.18◦N, 121.21◦E Crop(maize) 22.3 

Miyun  (MY), Beijing 40.63◦N, 117.32◦E Mixture 350 

Shouxian  (SX), Anhui 32.56◦N, 116.78◦E Mixture 22.7 

Tongyu  (TY), Jilin 44.57◦N, 122.88◦E Pasture 184 

Guantao  (GT), Hebei 36.52◦N, 115.13◦E Crop(wheat) 42 

Qingyang  (QY), Gansu 35.59◦N, 107.54◦E Grass 1095 

Shapotou  (SPT), Ningxia 37.53◦N, 105.18◦E Desert 1227 

Laoshan  (LS), Heilongjiang 45.28◦N, 127.58◦E Larch forest 340 

Dinghushan  (DHS), Guangdong 23.17◦N, 112.54◦E Coniferous broadleaf
mixed  forest

240  

Yueyang  (YY), Hunan 29.31◦N, 112.51◦E Deciduous broadleaf
forests

31  

Xilinhot  (XLH), Inner Mongolia 44.13◦N, 116.33◦E Typical steppe 1187 

Changbaishan  (CBS), Jilin 42.40◦N, 128.10◦E Mixed forests 761 

Dongtan  (DT), Shanghai 31.58◦N, 121.90◦E Permanent wetland 5 

Haibei  (QHB), Qinghai 37.60◦N, 101.33◦E Alpine meadow 3250 

Zhangye  (ZY), Gansu 39.09◦N, 100.30◦E Steppe desert 1483 
ology 171– 172 (2013) 187– 202

stations,  with LST obtained from remote sensing (Sun et al., 2005).
The presented satellite-derived air temperature methods have an
inherent error of up to approximately 2 ◦C, with either a high tem-
poral or a high spatial resolution. In this study, we have established
a simple statistical approach based on a linear regression between
the observed air temperature and two  surface variables (LST and
NDVI) to estimate the monthly air temperature in China from MODIS
products.

Ta = a0 + a1Ts + a2NDVI (9)

Ts = LSTday + LSTnight

2
(10)

ai (i = 0, 1, 2) is the coefficient, which can be calibrated by lin-
ear regression using the observed monthly air temperature data for
2001–2005 from all 752 meteorological stations in China and the
monthly MODIS products (LST and NDVI). The NDVI can be obtained
from monthly MODIS NDVI products from 2001 through 2010 at a
0.05◦ spatial resolution. Quality control (QC) flags are examined to
screen and reject NDVI data of insufficient quality (other parame-
ters, such as LST, albedo, from MODIS are all processed using the
same procedure).

Ta is the monthly air temperature (◦C). Ts is the mean monthly
land surface temperature(◦C), which can be estimated by averaging
two-phase data through two  MODIS Terra temperatures at 0.05◦

spatial resolution. MODIS Terra makes two monthly observations,
one during the daytime (LSTday) and the second at night (LSTnight).

2.4. Regional net radiation estimate

The surface net radiation (Rn) is the sum of the incidents of
downward and upward shortwave and longwave radiation. In this
paper, Rn can be calculated from the following equation:

Rn = S↓(1 − A) + εsL↓ − L↑ (11)

where S↓ is the surface downward shortwave radiation (Insola-
tion) (W m−2). We  use the monthly Insolation products (MOD02SSH)
from January to December for 2001–2010 at a spatial resolution
of 0.05◦, which is derived from the MODIS Insolation products
produced by Japan Aerospace Exploration Agency (JAXA). The

parameter A is the surface albedo, and we have derived all the sky
shortwave albedo monthly based on the MODIS collection 5 sur-
face Bidirectional Reflectance Distribution Function (BRDF)/albedo
product at a 0.05◦ spatial resolution. The actual surface albedo is

)  Mean ET (W m−2) Mean NDVI Measurement
method

Project Time period

34.7 0.22 ECOR CEOP 2008 (Jul–Sep)
89.6 0.71 ECOR CEOP 2008 (Jul–Sep)

102.9 0.72 ECOR CEOP 2008 (Jul–Sep)
61.6 0.53 ECOR ARM 2008 (May–Dec)
54.1 0.46 ECOR CEOP 2008 (Jul–Sep)
82.4 0.65 ECOR CEOP 2009 (Jun–Sep)
51.8 0.45 ECOR CEOP 2009 (Jul–Sep)
36.9 0.17 ECOR CEOP 2009 (Jun–Sep)
31.9 0.46 ECOR ChinaFlux 2002 (May–Dec)
69.1 0.68 ECOR ChinaFlux 2003 (Jan–Dec)

67.2 0.54 ECOR ChinaFlux 2005 (Jan–Dec)

15.8 0.26 ECOR ChinaFlux 2005 (Jan–Dec)
41.5 0.38 ECOR ChinaFlux 2003 (Jan–Dec)
55.8 0.12 ECOR ChinaFlux 2005 (Jan–Dec)
37.1 0.39 ECOR ChinaFlux 2003 (Jan–Dec)
29.1 0.48 ECOR CEOP 2008 (Jul–Sep)
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Fig. 3. Locations of the study area and land cover classification. (a) Locations of 16 flux towers, 752 meteorological stations and 7 natural divisions throughout China. Natural
divisions are shown: I, Northeast China; II, North China; III, Central China; IV, South China; V, Inner Mongolia; VI, Northwest China; and VII, Qinghai-Tibet region. (b) Land
cover classification of China used in this study. IGBP land cover types are shown: 0, water body; 1, evergreen needleleaf forest; 2, evergreen broadleaf forest; 3, deciduous
needleleaf forest; 4, deciduous broadleaf forest; 5, mixed forest; 6, closed shrubland; 7, open shrubland; 8, woody savanna; 9, savanna; 10, grassland; 11, permanent wetland;
12,  crop land; 13, urban/build up; 14, crop land/natural vegetation mosaic; 15, snow/ice; and 16, barren lands.

Fig. 4. (a) The comparison of the monthly estimated air temperature using Eq. (21) from 0.05 MODIS products and observed air temperature at 752 meteorological stations
in  mainland China. (b) Independent validation of the monthly estimated air temperature using Eq. (21) from MODIS products at 0.05◦ and observed air temperature at 16
flux  towers. (c) Map  of annual air temperature (◦C) for 2001 based on Eq. (21) from monthly MODIS averaged LST and NDVI products.
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Fig. 5. (a) Independent validation of the monthly estimated net radiation from
92 Y. Yao et al. / Agricultural and Forest M

btained by adding 50% of the black-sky albedo and 50% of the
hite-sky albedo. εs is the surface emissivity. The unreliable or
issing albedo data are also temporally filled using the method

roposed by Zhao et al. (2005). L↓ and L↑ are the downward and
pward long wave radiation flux (W m−2), respectively. εs can be
alculated by the following equation (Wang et al., 2005):

s = 0.2122ε29 + 0.3859ε31 + 0.4029ε32 (12)

here ε29, ε31 and ε32 are the emissivities in MODIS bands 29, 31
nd 32, respectively, which are part of the monthly LST products at
.05◦ spatial resolution.

L↓ and L↑ can be estimated by the equations (Jacobs, 1978):

↓ = (1 + 0.26n)L↓ clear (13)

↓ clear = εa�(Ta + 273.15)4 (14)

↑ = εs�(Ts + 273.15)4 (15)

here εa is the atmospheric emissivity; � is the Stefan–Boltzman
onstant (5.67 × 10−8 W m−1 K−4); n is the cloudiness varying from

 to 1 and is set as invariant constants (0.5) in this paper; εa can
e calculated from Ta (◦C) using the following formula (Idso and
ackson, 1969):

a = 1 − 0.261 × exp[−7.77 × 10−4 × (Ta + 0.15)2] (16)

In addition to the MODIS products, we also use monthly Palmer
rought Severity Index (PDSI) products derived from the NCAR
GD’s Climate Analysis Section dataset, with a 2.5◦ spatial reso-

ution, for the period from 2001 through 2010. To highlight the
bvious spatial variation features of both LE and PDSI, we  have inter-
olated the PDSI products into 0.05◦ from a 2.5◦ spatial resolution.

.5. Validation data

Ground-measured latent heat flux (LE), sensible heat flux (H),
ir temperature (Ta), vapor pressure (e), relative humidity (RHD),
iurnal temperature range (DT), ground heat flux (G) and net radi-
tion (Rn) are collected from the 8 flux towers under a Coordinated
nhanced Observation Project (CEOP) in the arid and semi-arid
egions of northern China, 1 flux tower of Atmosphere Radiation
easurement (ARM) in South Central China, and 7 flux towers of

hinaFlux in both Southeast and Northeast China (Table 2). The land
over types of the flux towers include crop fields, grass, steppe,
astures, desert, wetland, forests and mixed cover, including vege-
ation and bare soil at vastly different locations (Table 2 and Fig. 3).
ll the radiation flux experiments are conducted based on the eddy
ovariance (ECOR) method and ECOR suffers from an energy imbal-
nce problem (Jung et al., 2010). Therefore, the method put forward
y Twine et al. (2000) has been selected to correct the LE obtained
rom different towers (except for the Yueyang site because of the
eficiency of the measured H), and the corrected method is as fol-

ows:

E = LEEC

Rc
(17)

c = LEEC + HEC

Rn − G
(18)

Here, LE is the corrected latent heat flux. Rc is the energy closure
atio. LEEC and HEC are the original latent heat flux and the sensible
eat flux measured by the ECOR method, respectively.

MODIS NDVI composite products (MOD13A2) with a 1-km
patial resolution and a 16-day temporal resolution are used to

alidate different LE algorithms in this paper, and the daily NDVI
alues are temporally interpolated from the 16-day averages using
inear interpolation. Similarly, MODIS FPAR composite products
MOD15A2) with a 1-km spatial resolution and an 8-day temporal
MODIS  products at 0.05◦ and observed net radiation at 16 flux towers. (b) Map
of  annual net radiation (W m−2) for 2001 based on Eq. (11) from monthly MODIS
products.

resolution are also used to validate the PT-JPL model. Both the
daily daytime LST and the night time LST under clear skies are
extracted from the daily MODIS LST products (MOD11A1) with a
1-km spatial resolution. The water surfaces are identified using
the MODIS-based International Geosphere-Biosphere Programme
(IGBP) land cover types from MOD12 products for the year 2004
at 0.05◦ spatial resolution, assuming that there is no change in the
water body information during this decade (Fig. 3).

2.6.  Model performance and trend analysis

For model validation and trend analysis, we  analyze the cor-
relation and p values of the modeled LE and those derived from
the tower data, as well as the correlation, root mean square error
(RMSE), and mean bias to quantify how closely the modeled LE
resembles the observed LE. Linear trend analysis is used to analyze

the regional trends of the LE variables (yt). The linear model is used
to simulate yt against time (t).

yt = y0 + bt + εt (19)



Y. Yao et al. / Agricultural and Forest Meteorology 171– 172 (2013) 187– 202 193

Fig. 6. Time series comparisons of the modeled latent heat flux (daily total) estimates based on three PT algorithms and the ground-measured latent heat flux using the data
collected from the 8 flux towers in their respective land cover classes from the validation tower set. All r values are significant with 99% confidence.

Table  3
Statistics of estimated daily surface latent heat flux against the eddy-flux tower observations.

Tower Bias (W m−2) RMSE (W m−2) R2

PT-DTsR PT-DTaR PT-JPL PT-DTsR PT-DTaR PT-JPL PT-DTsR PT-DTaR PT-JPL

Dongsu −6.9 −3.4 −20.8 14.7 14.2 21.6 0.60 0.35 0.31
Jinzhou  −8.9 −5.3 −11.4 16.2 12.7 21.1 0.97 0.96 0.79
Miyun  −13.5 −9.8 −17.1 15.4 11.6 21.5 0.96 0.96 0.87
Shouxian  3.7 5.6 6.6 16.8 17.6 20.9 0.90 0.90 0.77
Tongyu  11.7 12.3 11.7 14.3 15.2 14.9 0.95 0.93 0.91
Guantao  −11.5 −6.9 −21.8 12.9 8.4 25.8 0.96 0.95 0.78
Qingyang  −27.6 −29.5 −35.4 30.5 33.4 39.7 0.81 0.71 0.53
Shapotou  −6.8 −7.6 −24.2 9.7 10.9 26.7 0.41 0.45 0.31
Laoshan  4.5 3.9 −2.1 4.8 5.9 3.8 0.83 0.31 0.53
Dinghushan  −3.8 −2.2 −6.1 9.9 11.3 16.9 0.97 0.96 0.90
Yueyang  −17.9 −16.9 −23.8 21.3 19.8 30.4 0.96 0.95 0.89
Xilinhot 0.2  1.7 −8.1 12.6 13.4 14.6 0.70 0.69 0.68
Changbaishan −8.6 −6.7 −19.8 13.8 12.9 22.5 0.91 0.91 0.89
Dongtan  −12.1 −13.2 −27.1 19.8 18.9 31.7 0.80 0.80 0.74
Haibei −14.4  −17.7 −14.1 24.8 26.7 20.2 0.93 0.92 0.89
Zhangye  6.6 5.9 5.2 24.4 24.2 23.3 0.22 0.22 0.16
Average −6.6  −5.6 −13.1 17.8 18.4 22.3 0.87 0.86 0.83
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Fig. 7. (a) Independent validation of the monthly estimated LE based on the PT-JPL LE algorithm derived from 16 flux towers at different biome types shown in Table 2. (b)
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ndependent validation of the monthly estimated LE based on the PT-DTaR model usi
alidation of the monthly estimated LE from MODIS products at 0.05◦ and the obse
re significant with 99% confidence.

The confidence levels of the derived tendencies are calculated
ccording to the Student’s t-test distribution with n − 2 degrees of
reedom (Pinker et al., 2005).

 = rxy

√
n − 2

1 − r2
xy

(20)

Here, rxy is the correlation coefficient between the original time
eries and the linear-fitted time series, and n is the number of obser-
ations. We  have applied the linear trend analysis pixel-wise to
alculate the LE trend for each pixel. We  also calculated the regional
verage time series and then applied the linear trend analysis to
uantify the regional LE trends.

. Results and discussion

.1.  Regional air temperature and net radiation estimation

.1.1. Implementation of regional air temperature algorithm
We  have implemented the air temperature estimation algo-

ithm in China to further demonstrate its reliability. We  have

elected Ta, NDVI, LSTday, and LSTnight, as the input parameters for
inear regression to yield Eq. (9) for air temperature estimation
ased on monthly meteorological data, monthly MODIS-NDVI com-
osite products and MODIS-LST composite products with a 0.05◦
 data from 16 flux towers at different biome types shown in Table 2. (c) Independent
E at 16 flux towers at different biome types shown in Table 2. These relationships

spatial resolution covering 2001–2005 from 752 meteorological
stations across continental China (Fig. 3). Considering that these
meteorological stations cover all the provinces of China, we  find
these sufficiently representative for the purpose of estimating Ta

(◦C) in China using Ts (◦C) and NDVI.

Ta = −2.911 + 0.910Ts + 7.606NDVI (21)

Fig. 4a shows scatter plots of a comparison between the monthly
estimated and observed air temperature using near surface obser-
vation data, MODIS LST products and MODIS NDVI products. We
observe that the bias of the estimated air temperature for all 752
meteorological stations is −0.05 ◦C. The RMSE is 2.24 ◦C, and the R2

is approximately 0.96. The accuracy of the monthly near surface
air temperature simulation can be used to estimate the surface net
radiation and latent heat flux in China.

To fairly evaluate the accuracy of the near surface air tempera-
ture estimation in China, the monthly near surface air temperature,
estimated based on Eq. (21) from MODIS data with 1 km spatial res-
olution, has been independently validated using the observed data
collected from 16 flux towers. The estimated air temperature is cor-

related with the tower measurements, with an R2 of approximately
0.96, an RMSE of approximately 2.45 ◦C, and a low bias of approxi-
mately 0.56 ◦C (Fig. 4b). The resulting RMSE of 2.45 ◦C is relatively
low, considering the estimated error of the input LST (the accuracy
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Fig. 9. Map of multiyear (2001–2010) mean annual LE in China as derived from the
modified satellite-based Priestley–Taylor ET model using Rn ,  NDVI, Ta , and DTsR from
MODIS products.
ig. 8. Comparisons of modeled and measured annual latent heat flux at the 5
epresentative validation tower sites.

f the input LST is slightly better than 2 ◦C). The spatial distribution
f the average near surface air temperature for 2001 in China is
lotted in Fig. 4c, which shows the strong regional variations cor-
esponding to the climate patterns. The sub-tropical forest regions
how the highest annual air temperature, while Qinghai-Tibet and
he Northeast areas within the cold-temperate regions show the
owest annual air temperature.

.1.2.  Estimation and validation of regional net radiation

Monthly net radiation estimates at a 0.05◦ spatial resolution

re constructed using MODIS Insolation, MODIS albedo for short-
ave radiation, MODIS land surface temperature and emissivity for

ongwave upward radiation and the near surface air temperature

Fig. 10. Multiyear (2001–2010) mean seasonality of LE in China.
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ig. 11. Regional and terrestrial averaged annual LE anomalies in China. Dashed lin
er decade).

erived from Eq. (21) for longwave downward radiation. Although
igorous validation of the surface radiation flux derived from the
emote sensing data described here presents a challenging problem
ue to the deficiency of the time-continuous flux measurements at

 scale of at least 0.05◦, the tower measurements may  sample the
ariability of the radiation flux in the heterogeneous landscape at

 0.05◦ scale. Therefore, we have selected 16 flux towers shown in
able 2 to validate the estimated surface net radiation. Over all the
ites, the estimated monthly net radiation from MODIS agreed well
ith the tower measurements, with a correlation coefficient of 0.88

p < 0.01), RMSE of 23.9 W m−2, and bias of 8.5 W m−2 (Fig. 5a). The
ositive bias may  result from (1) the accumulated error of inputs of
he MODIS products, including albedo, LST and Insolation, (2) the dif-
erences of scaling from tower footprints to satellite mixed pixels,
nd (3) the accuracy of the surface net radiation algorithm simula-
ion. As shown in Fig. 5b, the spatial distribution of net radiation for
001 in China shows that the largest fluxes occur in the Qinghai-
ibet areas, followed by the dry regions (e.g., Northwest and North
hina) and the humid temperate regions in Northeast China and

nner Mongolia. Small net radiation fluxes occur in subtropical envi-
onments due to the higher cloud cover fraction.

.2. Validation of latent heat flux estimates

.2.1. Model validation
Our  modeled LE has been compared against the LE measured by

he eddy covariance method (Baldocchi et al., 2001) at the towers

or the respective range of footprints. The time series comparisons
f the modeled LE (daily total) estimates based on three PT meth-
ds and ground-measured LE using the data collected from the

 flux towers are plotted in Fig. 6. In general, the modeled and
resent the linear trends in the LE estimated using the MODIS products (unit: W m−2

measured  seasonal curves show good agreement, although the
model LE based on our modified LE model tends to underestimate
the tower observations for meadow sites. This LE underestimation
is likely due to wet  soil and low vegetation cover in the meadow
sites, resulting in a greatly reduced vegetation transpiration con-
trolling factor and enhanced evaporation. For all 16 validation
sites, the LE simulations using our modified LE model show gen-
erally better results than the PT-JPL method (Table 3). For both
the PT-DTsR and the PT-DTaR model, the average daily bias for
all sites is −6.6 W m−2 and −5.6 W m−2, respectively, the average
RMSE is 17.8 W m−2 and 18.4 W m−2, respectively, and the aver-
age R2 is 0.87 and 0.86, respectively. However, the overall R2 for
the comparison between the measured and modeled daily LE using
the PT-JPL model is 0.83, the RMSE is 22.3 W m−2 and the bias
is −13.1 W m−2 (Table 3). The negative bias may  partly be from
the energy imbalance issue encountered in the eddy covariance
method. The standard deviations and correlation coefficients at the
flux towers are very good (Table 3) at the different land cover types,
indicating that the modified PT method proposed in this study
works well.

On  a monthly basis, the model LE results using both PT-DTaR
and PT-JPL derived from tower-measured data agree well with the
LE observations from all 16 tower sites (Fig. 7). The tower-driven
results using the PT-DTaR model account for 91% of the observed
variation in the monthly LE measurements, with respective RMSE
and bias differences of 12.5 W m−2 and −6.4 W m−2, while the
tower-driven results using the PT-JPL model explain only 78% of

the variation in the measured LE, with respective RMSE and bias
values of 19.4 W m−2 and −10.3 W m−2. Similarly, the monthly esti-
mated results based on PT-DTsR from the MODIS products at 0.05◦

spatial resolution are also compared with the ground observations
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Fig. 12. Spatial representation of LE derived from the MODIS products anomaly for
Y. Yao et al. / Agricultural and Forest M

orresponding to the specific land-surface type associated with the
ite, and they account for approximately 83% of the observed vari-
tion in monthly LE measurements. This finding may be attributed
o the fact that the local tower conditions were poorly represented
y the coarse MODIS products at several sites, reducing the over-
ll performance of the MODIS-driven results. Despite this sub-pixel
eterogeneity, it is essential to observe that the inputs for PT-DTsR
onsist of uniform values for the entire grid box (Miralles et al.,
011). Importantly, the MODIS-driven results show similar perfor-
ance to the tower-driven results at most flux towers.
To  identify the annual bias for variations of multiyear LE, the LE

nnual anomaly validation can be considered a good choice (Wang
t al., 2010a). However, with only 5 flux towers covering one year of
eliable data, we have compared the modeled and measured annual
atent heat flux at the 5 validation tower sites, including forest,
rass, meadow and wetland (Fig. 8). The results illustrate that the
T-DTsR model offers the highest simulation accuracy for annual
E at the 5 flux towers, with an R2 of 0.96, RMSE of 5.8 W m−2 and
ias of −1.2 W m−2, followed by the PT-DTaR model and the PT-JPL
odel. Although radiation forcing and uncertainty across models

xists in different LE algorithms, considering that our modified LE
odel results show small biases for algorithm validation, the high

oefficients of determination (R2), low RMSE, and bias for monthly
nd annual LE results indicate that the satellite-based algorithm
enerally captures the observed seasonal and inter-annual varia-
ions and the site-to-site differences in LE (Zhang et al., 2010; Jung
t al., 2010).

.2.2. Algorithm advantages and limitations
Advantages offered by the modified Priestley–Taylor LE model

ver other complicated physical ET models are that (1) the mod-
fied model is easy to operate for routine, long-term mapping of
E because it only needs four inputs, namely, net radiation, NDVI,
ir temperature and diurnal temperature range; and (2) the LE
lgorithm used by the modified model avoids the computational
omplexities of aerodynamic resistance parameters.

Accurate estimation of terrestrial LE is a challenging scientific
roblem because soil surface evaporation and plant transpira-
ion processes involve a large number of physical factors, such as

icro-meteorology, plant biophysics for site-specific species and
andscape heterogeneity (Friedl, 1996; McVicar et al., 2007; Mu
t al., 2007, 2011). The following limitations remaining in our mod-
fied PT model can effectively account for the differences between
he observed LE from flux towers and the modeled LE: (1) Our mod-
fied PT algorithm has been developed by revising the expression
f different controlling LE factors (energy, water and temperature
onstraints) for all climatic zones without considering the differ-
nces of parameters in different biome types. However, for different
iome types within the same climatic zones, differences in these
arameters may  exist (Nemani et al., 2003; Turner et al., 2003; Mu
t al., 2011). Thus, there may  be small biases between the observed
nd the modeled LE. (2) The effects of CO2 on LE are not included
n our model. Despite the fact that increases in leaf area index (LAI)
r NDVI can largely compensate for the decreases in plant transpi-
ation due to high-CO2-induced partial stomatal closure, the daily
otal LE may  be underestimated (Idso and Brazel, 1984; Piao et al.,
007; Wang et al., 2010a,b; Yao et al., 2012). For one decade, this
ffect on LE may  be negligible, but for additional decades, this effect
hould be considered (Zhang et al., 2009; Mu  et al., 2011). (3) The
echanisms of soil heat fluxes and soil boundary layer resistance

re still uncertain. We  have estimated soil heat fluxes using a simple

emi-empirical method in this paper. As a result, we  may  over-
stimate soil heat fluxes and underestimate the LE. Therefore, a
atellite-based method for estimating soil heat fluxes in different
cosystems needs to be explored in the future.
ten years, 2001–2010. “Anomaly” refers to the annual value for each year minus the
10-year average.

3.3. China’s latent heat flux patterns

We have applied PT-DTsR with the monthly MODIS products
(Insolation, albedo, LST, NDVI, etc.) inputs to estimate the monthly
LE in China at a 0.05◦ spatial resolution from 2001 through 2010.
The multiyear (2001–2010) average annual LE is plotted in Fig. 9,
which shows strong regional variations and latitudinal gradients
corresponding to climate patterns in China (Zhang et al., 2010).

The largest LE occurs in the tropical and subtropical regions (South
and Central China), followed by the temperate and boreal forest
regions in North and Northeast China. A small LE flux occurs
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ig. 13. Maps of the linear trend in estimated LE, Insolation from JAXA, and MODIS-
tatistical linear trend analysis: significant increase (p < 0.1), significant decrease (p

n the dry and lower temperature regions including Northwest
hina, Inner Mongolia and the Qinghai-Tibet region of China.
he terrestrial average annual LE in China is 28.7 ± 1.1 W m−2,

qual to 364.9 ± 14.6 mm.  The Evergreen Broadleaf Forest
iome has the highest average LE of 68.3 ± 3.7 W m−2, fol-

owed by Permanent Wetland (56.2 ± 4.6 W m−2), Mixed Forest
47.3 ± 2.8 W m−2), Deciduous Broadleaf Forest (43.7 ± 2.8 W m−2),
rom 2001 through 2010. The trends are classified into four categories according to
, insignificant increase (p > 0.1) and insignificant decrease (p > 0.1).

Crop  Land (40.9 ± 3.1 W m−2), Evergreen Needleleaf For-
est (34.5 ± 2.4 W m−2), Closed Shrubland (33.8 ± 1.9 W m−2),
Deciduous Needleleaf Forest (34.4 ± 5.8 W m−2), Grassland

(20.2 ± 1.7 W m−2), Open Shrubland (12.6 ± 1.2 W m−2) and
Barren Lands (7.5 ± 1.6 W m−2). Although some uncertainties are
present, the LE magnitudes and spatial pattern of LE in China is
generally consistent with previous reports (Mu et al., 2007; Jung



Y. Yao et al. / Agricultural and Forest Meteorology 171– 172 (2013) 187– 202 199

F er plo
p

e
m
a
s
r
6
f
S

t
p
t
C
t
o
a
w

3

o
a
c
d
2
t
d
t
d
I
r
6
a
a
o

M
C
l

ig. 14. (a) Map  of the linear trend in PDSI in China during 2001–2010; (b) the scatt
lot between the anomaly of LE and the PDSI over South China.

t al., 2010; Zhao and Running, 2010). Gao et al. (2007) used the
odified water balance methodology and found that the annual

ctual ET varied from 20 mm in the northwest to 1000 mm in the
outheast of China. Zhang et al. (2010) used 1983–2006 satellite
ecords to calculate the annual ET and reported an annual ET of
35 ± 200 mm,  507 ± 157 mm,  311 ± 193 mm  and 352 ± 166 mm
or Deciduous Broadleaf Forest, Cropland, Grassland and Closed
hrubland, respectively.

The  multiyear mean seasonal patterns of LE in China from 2001
hrough 2010 based on the PT-DTsR model with monthly MODIS
roduct inputs shows obvious global seasonality (Fig. 10). We  find
hat the sub-tropical and temperate regions in North and Central
hina exhibit higher seasonal variability than the tropics, while the
ropical regions of South China still show high LE values through-
ut the different seasons. These spatial distribution maps supply
n important background and physical interpretation for energy,
ater and climate change in China.

.4. Variations of terrestrial latent heat flux in China

On the whole, the estimated terrestrial LE in China after removal
f the mean annual cycle shows a trend toward a small decrease on
verage for the 2001–2010 period (−0.4 W m−2 per decade; p = 0.3),
oinciding with widespread regional drought and net radiation
ecline (Qi et al., 2011; Qian et al., 2011) (Fig. 11). Especially in 2001,
003, 2005 and 2010, the LE values were significantly lower than
he annual mean values in China because severe drought occurred
uring these periods (Qian et al., 2011) (Fig. 12). Fig. 13 shows
he spatial pattern of LE trends from 2001 through 2010. The LE
ecreased over large areas in Central China, Northwest China and

nner Mongolia while increasing in the Northeast, North and South
egions of China. The LE results show generally negative trends for
1% of the entire China domain (Fig. 13). Approximately 54% of the
reas showing significant negative LE trends occur in the Northwest
nd Inner Mongolia regions of China, while the forest and croplands
f North China show significant positive LE trends.
Regionally, the LE in Central China, Northwest China and Inner
ongolia explains 60% of the variations in the terrestrial LE of

hina. In these areas, the negative annual LE is mainly caused by
arge-scale droughts (Lu et al., 2011; Barriopedro et al., 2012).
t between the anomaly of LE and the PDSI over Northwest China; and (c) the scatter

However,  in Central China, in addition to drought, substantial
increases of aerosol optical depth (AOD) caused by industrial activ-
ity have decreased the LE by reducing solar radiation on the Earth’s
surface by upward reflection and absorption (Zhou et al., 2004;
Wang et al., 2009; Zheng et al., 2011). As shown in Fig. 13, the spa-
tial variation of the LE and the solar radiation anomalies show the
same general trends, and the spatial correspondences support the
lack of sunlight as the cause of the change in LE (Myneni et al., 2007;
Sasai et al., 2011). As a result, in 2003, because the annual mean
solar radiation is relatively low, plant photosynthesis activity and
LE have dropped across China.

For vegetated land areas of Northeast, North and South China,
large scale afforestation and agricultural intensification, such as
the Three-Norths Shelter Forest System Project and South Natural
Forest Protection Project, have increased NDVI and the vegeta-
tion cover, thus increasing the terrestrial LE (Cao, 2008) (Fig. 13).
Although the tropical forest regions of South China have expe-
rienced drying trends during recent years (especially an intense
drought episode in 2010), the LE shows a positive trend (2.2 W m−2

per decade, p = 0.17). Besides human activities, this finding may
also partially be attributed to the fact that solar radiation plays
a dominant role in controlling vegetation growth, and the LE in
the humid tropical regions, in which forests rarely experience soil
moisture limitations due to an ample supply of moisture, as well as
to the fact that fewer clouds during drought permit more sunlight
to reach the surface and the vegetation activity may  be higher in
the dry season than in the wet season (Nepstad et al., 1994; Schenk
and Jackson, 2005; Huete et al., 2006; Myneni et al., 2007; Teuling
et al., 2009; Seneviratne et al., 2010; Wang and Dickinson, 2012).
Thus, a significant positive correlation (r = 0.62, p < 0.1) was found
between the anomaly of LE and the PDSI in the arid and semi-arid
regions of Northwest China, while only a significant negative cor-
relation (r = −0.68, p < 0.1) was  found in the humid tropical regions
of South China (Fig. 14). For the Qinghai-Tibet plateau with an aver-
age elevation of more than 4000 m,  increasing LE occurs in the east
while LE tends to decrease in western Qinghai-Tibet regions. These

may be due to the increasing precipitation in eastern areas and the
decline of precipitation in the west of the domain associated with
climate warming during the recent 10-year period (Wang et al.,
2012).
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ig. 15. Seasonal trends of average LE in China derived from MODIS products
etween  2001 and 2010.

A seasonal change of the terrestrial LE in China during the
0-year period is most noticeable (Fig. 15). The MODIS-derived
E shows negative trends in spring, summer and autumn, with a
lightly increasing trend in winter. The largest significant decline of
he LE occurs in the spring followed by summer and autumn. These
esults suggest that large-scale severe drought episodes offset the
ositive LE effects of afforestation and contribute to the decreases in
easonal LE, while the positive LE trend in winter is associated with
he lengthening of the seasonal non-frozen period caused by global
arming (Zhang et al., 2009; Yang et al., 2012). For the growing sea-

on, the larger negative LE trends in spring, summer and autumn
ndicate that China became dryer during the past decade. In con-
rast, the slightly positive LE trends illustrate that China became
etter during the winter periods of 2001–2010.

. Summary and conclusion

Latent  heat flux remains one of the greatest unknowns within
he global energy, water and carbon cycles. To better understand
he spatio-temporal dynamics of LE in China, we  have modified
he satellite-based Priestley–Taylor LE model, based on the PT-JPL

odel, to estimate China’s latent heat flux on a month’s time scale.
his algorithm quantifies the Priestley–Taylor coefficient to esti-
ate the LE over a wide range of climate conditions using the

atellite-derived NDVI, net radiation, air temperature and diurnal
emperature range. Meanwhile, a semi-empirical air tempera-
ure algorithm based on MODIS observations and meteorological
bservations has been designed to estimate China’s monthly air
emperature at a 0.05◦ spatial resolution.

Overall,  the estimated seasonal LE using the new model agreed
ell with the tower measurements. The daily RMSE is reduced

rom 22.3 W m−2 from the PT-JPL LE model to 17.8 W m−2 with
ur modified approach (PT-DTsR). The R2 increased from 0.83 to
.87, averaged over all sites for validation, and the mean biases are
lso reduced accordingly. Our satellite-based LE algorithm gener-
lly captures the observed seasonal and inter-annual variations and
ite-to-site differences in the LE.

The spatial distribution of our modeled mean annual LE at 0.05◦

patial resolution has followed the patterns of NDVI distribution
nd the LE magnitudes and the spatial pattern of the LE in China is
enerally consistent with the findings of other studies. Importantly,
he spatial variation of the annual LE anomaly in China is completely
ifferent in different climatic zones: the LE has decreased over

arge areas in Central China, Northwest China and Inner Mongolia,
hile increasing in the Northeast, North and South regions of

hina. A large-scale drought and the afforestation may  account
or the variations in the terrestrial LE in China. An important next
tep is to extend our analysis to quantify how the human-induced
ology 171– 172 (2013) 187– 202

land-use change affects the latent heat flux and the sensible heat
flux exchange in various ecosystems.
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