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Abstract Data have been compiled from published sources

on nitrogen (N) fluxes in precipitation, throughfall, and

leaching from 69 forest ecosystems at 50 sites throughout

China, to examine at a national level: (1) N input in precipi-

tation and throughfall, (2) how precipitation N changes after

the interaction with canopy, and (3) whether N leaching

increases with increasing N deposition and, if so, to what

extent. The deposition of dissolved inorganic N (DIN) in

precipitation ranged from 2.6 to 48.2 kg N ha-1 year-1,

with an average of 16.6 kg N ha-1 year-1. Ammonium was

the dominant form of N at most sites, accounting for, on

average, 63% of total inorganic N deposition. Nitrate

accounted for the remaining 37%. On average, DIN fluxes

increased through forest canopies, by 40% and 34% in broad-

leaved and coniferous forests, respectively. No significant

difference in throughfall DIN inputs was found between the

two forest types. Overall, 22% of the throughfall DIN input

was leached from forest ecosystems in China, which is lower

than the 50–59% observed for European forests. Simple

calculations indicate that Chinese forests have great potential

to absorb carbon dioxide from the atmosphere, because of the

large forest area and high N deposition.

Keywords Carbon sequestration � Chinese forests �
Nitrogen deposition � Nitrogen leaching � Nitrogen

retention

Introduction

The rapid expansion of industry and intensive agriculture,

and human population growth, in Asia has increased the use

of reactive nitrogen (Nr) and its emission into the environ-

ment (Zheng et al. 2002; Galloway et al. 2004). In China,

emission of Nr into the environment has significantly

increased during recent decades; total NOx emission

increased from 8.4 Tg year-1 in 1990 to 11.3 Tg year-1 in

2000, and total NH3 emission increased from 10.8 to

13.6 Tg year-1 over the same time period (Lu and Tian

2007), and further increases are predicted (Zheng et al. 2002).

Nitrogen deposition of greater than 25 kg N ha-1 year-1, a

threshold above which N saturation is often observed in

temperate forests in Europe (Gundersen et al. 1998a, 2006;

Dise et al. 1998, 2009), has frequently been reported in many
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regions in China (Liu et al. 2006; He et al. 2007; Lu and Tian

2007; Zhang et al. 2008; Fang et al. 2008, 2011). In China,

average wet deposition of inorganic N is estimated to be

9.9 kg N ha-1 year-1 (Lu and Tian 2007). This is larger than

in both the United States (3.0 kg N ha-1 year-1) and western

Europe (6.8 kg N ha-1 year-1) (Holland et al. 2005).

Chronic elevated N deposition in forest ecosystems

may lead to N saturation when the biotic demand for N is

exceeded. Nitrogen saturation leads to increased rates of N

cycling and losses of nitrate (NO3
-) from the root zone,

soil and surface water acidification, plant nutrient imbal-

ances, and even, in some cases, forest decline (Fenn et al.

1998; Aber et al. 1998, 2003). The onset of N saturation

and the magnitude of the effects of N deposition are lar-

gely dependent on the capacity to retain anthropogenic N

input, i.e. ecosystem initial N status and the history and

form of N input (Gundersen et al. 1998b; Matson et al.

1999).

On the other hand, retained N deposition is likely to

enhance primary production of many terrestrial ecosys-

tems, and thus increase carbon dioxide (CO2) sequestra-

tion from the atmosphere, although there is large

uncertainty about the magnitude of additional C seques-

tration on global and regional scales (Nadelhoffer et al.

1999; Magnani et al. 2007; Reay et al. 2008; Sutton et al.

2008; de Vries et al. 2009). Buildup of N is also likely to

increase accumulation of soil organic matter in the form

of increased leaf/needle biomass and litter production,

and reduced decomposition of organic matter, depending

on the stage of humus formation (Neff et al. 2002a; de

Vries et al. 2009).

Forests cover 14% of China, and assessment of national

forest inventory data shows that the carbon stock in forest

biomass increased significantly from the 1980s to the 1990s

(from 0.06 ± 0.03 to 0.09 ± 0.04 Pg C year-1, Fang et al.

2007; Piao et al. 2009). An average net carbon sink of

0.18 ± 0.07 Pg C year-1 was estimated for all Chinese

terrestrial ecosystems during the same period, with, on

average, 58% of this sink in the biomass and the rest in soil

organic matter (Piao et al. 2009). This C sink has mainly

been attributed to regional climate change and large-scale

plantation programs active since the 1980s (Piao et al.

2009). However, we propose that atmospheric N deposition

during the same time period may also be one of important

contributors to increased forest biomass.

Although N deposition in precipitation has been mapped

for China (Lu and Tian 2007), we do not know the total N

loads of forests and the geographical distribution of ele-

vated inputs. This is because forests may have N input

different from that measured in precipitation N, because

the forest canopy can efficiently scavenge gas and partic-

ulate N from the atmosphere (Lovett and Lindberg 1993;

Fenn and Poth 2004; Chen and Mulder 2007a, b; Fang et al.

2011). Furthermore, the efficiency of C sequestration is

related to N retention capacity (de Vries et al. 2006). To

identify current forest N status and, thereby, the potential

response to future scenarios of N deposition in China,

synthesis of N fluxes, especially throughfall, at a national

level is required.

In this paper a preliminary analysis of data compiled

from 69 forest ecosystems across China was used to

quantify N input in precipitation and throughfall, and N

leaching losses at a national level. The objectives of this

study were to examine:

1. the level of N input in precipitation and throughfall;

2. how the speciation of N in precipitation changes after

the interaction with canopy; and

3. whether N leaching increases with increasing N

deposition and, if so, to what extent.

We discuss how the patterns observed in China differ

from those in Europe and North America. On the basis of

these findings, the potential C sequestration induced by

elevated N deposition in Chinese forest ecosystems was

approximately estimated, and is discussed.

Methods

Data on forest N fluxes (precipitation, canopy throughfall,

and leaching losses) were compiled from the literature

since 1980 (Supplementary Table 1). Only data from for-

ests with annual fluxes were included, with the exception of

seven forests (in northern China) where N fluxes only for

the rainy season were available, and so N fluxes might have

been underestimated. In the earlier years (1980s and

1990s), N fluxes were often reported only as total dissolved

N (TDN). More recently, dissolved inorganic N (DIN,

NH4
?, plus NO3

-) fluxes have been reported, and the

contribution from dissolved organic N (DON, the differ-

ence between TDN and DIN) has also been reported for

some forests. For forests where N fluxes were monitored

and reported for several years, average values were used in

the analysis. Not all N fluxes data were available for all

forests. In total, 69 forests with N fluxes at 50 sites were

included in this study (Fig. 1). Forests were classified into

broad-leaved or coniferous type on the basis of the domi-

nant species.

In addition, the pH and N concentration were compiled

when available. Information on study period, annual air

temperature, water volume (e.g. amount of precipitation),

forest age, elevation, and species composition were

extracted from the original publications (Supplementary

Table 1). Annual precipitation and temperature were

obtained from related publications for the sites for which

such information was not presented.
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Results

Nitrogen deposition in precipitation

For 32 of the 50 forest sites, NH4
? and NO3

- fluxes in pre-

cipitation were reported separately (Fig. 2a), whereas for the

rest only TDN was reported. DIN fluxes ranged from

2.6 kg N ha-1 year-1 in Changbaishan, Jilin province, and

3.3 kg N ha-1 year-1 in Liangshui, Heilongjiang, to

48.2 kg N ha-1 year-1 at a site in Jiangxi province, with an

average of 16.6 kg N ha-1 year-1 (Fig. 2a; Table 1). Aver-

age DIN flux in precipitation increased from 12.6 kg N

ha-1 year-1 (n = 10) in the 1990s to 17.7 kg N ha-1 year-1

(n = 20) in the 2000s, but the increase was not statistically

significant (data not shown). Ammonium ranged from 1.6 to

47.1 kg N ha-1 year-1, and NO3
- ranged from 1.0 to

15.6 kg N ha-1 year-1 (Figs. 2a, 3). At most sites ammo-

nium was the dominant form of N in precipitation, accounting

for, on average, 63% of total inorganic N (Fig. 3a). Variation

of NH4
? loading explained 91% of the variability of DIN in

precipitation among the sites (Fig. 3a). Nitrate accounted for,

on average, 37% of the DIN, and represented 70% of the

variability of DIN (Fig. 3b). Ammonium also correlated with

NO3
- (R2 = 0.47, P \ 0.01, n = 31; one site in Jiangxi

province excluded), suggesting that high NH4
? input sites

usually also had high NO3
- input.

Data on TDN were available for 25 of the forest sites

(for six of which DIN fluxes had also been measured, and

thus were included in both Fig. 2a, b). TDN fluxes ranged

from 3.0 to 60.6 kg N ha-1 year-1 (Fig. 2b). TDN flux

averaged 18.0 kg N ha-1 year-1. At six sites where both

DIN and TDN were measured, DON fluxes were between

1.4 kg N ha-1 year-1 at Liangshui, Heilongjiang province,

and 17.8 kg N ha-1 year-1 at Dinghushan, Guangdong.

Average DON flux was 7.7 kg N ha-1 year-1 (Fig. 2b). At

these sites, DON constituted between 21 and 56% of TDN

in precipitation (average 32%).

Throughfall nitrogen deposition

Data on DIN in throughfall were available for 42 forests, of

which 18 were broad-leaved and 24 were coniferous

(Table 2). Ammonium flux varied substantially, from 0.5 to

Fig. 1 The location of the 50 precipitation sites included in this

synthesis

Fig. 2 Input of dissolved inorganic N (DIN, 32 sites, a) and total

dissolved N (TDN, 25 sites, b) in precipitation on to forests in China

Table 1 Nitrogen input (kg N ha-1 year-1) in precipitation at 31 forest sites throughout China, in comparison with other studies

NH4
? NO3

- DIN References

Chinese forest site (1980–2009) 11.3 5.3 16.6 This study

Linzhi, Tibet, remote site (2005–2006) 1.6 0.6 2.2 Jia et al. (2009)

Waliguan, Qinghai, remote site (1997) 2.5 0.4 2.9 Tang et al. (2000)

China (1984–2004) 7.1 2.8 9.9 Lu and Tian (2007)

USA (1978–1994) 1.4 1.6 3.0 Holland et al. (2005)

Western Europe (1978–1994) 4.2 2.6 6.8 Holland et al. (2005)

Europe 7.1 5.5 11.2 Dise et al. (2009)

8 Chinese EANET sites in 2008 9.5 5.6 15.1 EANET (2009)

12 Japanese EANET sites in 2008 2.9 3.2 6.1 EANET (2009)

51 EANET sites in 2008 5.8 3.8 9.6 EANET (2009)

EANET, acid deposition monitoring network in east Asia
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68.9 kg N ha-1 year-1, whereas NO3
- flux ranged from 0.2

to 26.7 kg N ha-1 year-1. Average NH4
? and NO3

- fluxes

were 12.2 and 8.3 kg N ha-1 year-1, respectively. DIN

ranged from 2.8 to 71.0 kg N ha-1 year-1, with an average

of 20.8 kg N ha-1 year-1 (Table 2). TDN flux was esti-

mated for 35 forests, for eight of which DIN data were also

available (Table 2). The range of TDN was similar to that of

DIN. Mean DON flux was 10.3 kg N ha-1 year-1 (Table 2).

No significant difference in fluxes was observed for any N

species or fractions between forest types (P [ 0.05). A TDN

input as high as 23.3 kg N ha-1 year-1 was unexpectedly

observed in a spruce forest in Tibet (Xin and Zhai 2003;

Fig. 2b) where N deposition is generally found to be among

the lowest (Jia et al. 2009).

N input in throughfall is empirically correlated with the

N input in precipitation. But this relationship varied

between forest types and between N species (Fig. 4). In the

broad-leaved forests throughfall N input was, on average,

15% higher than N inputs in precipitation, because of

washing off of additional N (e.g., contributed by dry

deposition or exchange) from the canopy (Fig. 4a). In

contrast, in the coniferous forests, throughfall N input was

19% lower than precipitation N input. This reduction

was caused by lower TDN input in throughfall than in

precipitation (Fig. 4b). In fact, DIN input increased sub-

stantially after passing through the canopy in both the

broad-leaved (by 40%, Fig. 4a) and coniferous forests (by

34%, Fig. 4b).

Nitrogen leaching

Data on annual N leaching losses below the rooting zone or

via small streams were available for 34 forests, for seven of

which both TDN and DIN data were given (Fig. 5). TDN

leaching (20 forests) ranges from 0.05–39.0 kg N ha-1

year-1 (Fig. 5), average 8.8 kg N ha-1 year-1. Of these

forest ecosystems, 45% leached less than 5 kg N ha-1

year-1, and 70% less than 10 kg N ha-1 year-1 (Fig. 6).

DIN leaching (21 forests) was from 0.3 to 36.5 kg N ha-1

year-1, with an overall mean of 5.7 kg N ha-1 year-1. Of

these forest ecosystems, 62% leached less than

5 kg N ha-1 year-1, and 76% less than 10 kg N ha-1

year-1 (Fig. 6). High N leaching was found in warm and

humid areas, for example Hainan, Guangdong, and Yunan

(data not shown). For most of the 18 forests for which DIN

concentrations were available, NO3
- was the dominant N

form in stream water and below the rooting zone, although

NH4
? accounted for, on average, 25% of DIN and was

actually the dominant DIN loss in three forests. The contri-

bution of NH4
? to DIN leaching was usually high in forests

Fig. 3 Fluxes of DIN versus NH4
? (a) and NO3

- (b) in precipitation

at 31 forest sites across China. One site with extremely high NH4
? but

low NO3
- input (marked by open squares) was excluded from the

regression analysis

Table 2 Nitrogen input in throughfall in Chinese forests

(kg N ha-1 year-1)

NH4
? NO3

- DIN TDN DON

Broad-leaved forests

Minimum 0.5 0.2 3.8 5.6 12.4

Maximum 25.8 25.0 50.8 59.2 20.1

Mean 10.5 9.9 20.4 19.7 16.3

SE 1.9 1.6 3.1 3.3 3.9

n 18 18 18 17 2

Coniferous forests

Minimum 0.7 1.1 2.8 2.2 1.3

Maximum 68.9 26.7 71.0 60.1 18.2

Mean 13.5 7.0 21.0 23.8 8.3

SE 3.3 1.4 3.9 3.9 2.7

n 23 23 24 18 6

All forests

Minimum 0.5 0.2 2.8 2.2 1.3

Maximum 68.9 26.7 71.0 60.1 20.1

Mean 12.2 8.3 20.8 21.8 10.3

SE 2.1 1.1 2.6 2.6 2.5

n 41 41 42 35 8

Fig. 4 Precipitation N input versus throughfall N input in broad-

leaved forests (a) and coniferous forests (b) in China. In a,

y = 1.40x - 3.15, R2 = 0.91 for DIN, n = 18; y = 1.02x ? 4.23,

R2 = 0.93, for TDN, n = 16. In b, y = 1.34x - 0.28, R2 = 0.58 for

DIN, n = 24, y = 0.62x ? 9.42, R2 = 0.62 for TDN, n = 14. For all

correlations P B 0.001. The regression lines in figures are across both

DIN and TDN
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with low N leaching rate (0.5–2.2 kg N ha-1 year-1, data

not shown). This is consistent with the report for N loss in

unpolluted temperate forests in South America where NH4
?

was shown to be dominant in inorganic N in stream water

(Perakis and Hedin 2002). DON flux was up to

16.8 kg N ha-1 year-1 in a broad-leaved forest in Guang-

dong (Fang et al. 2008), but the average value was only

3.1 kg N ha-1 year-1 for the other six forests (data not

shown).

There was no significant difference in N leaching

between the broad-leaved and coniferous forests, irre-

spective of N species, though mean N leaching was higher

in broad-leaved forests than in coniferous forests (Fig. 6).

For example, DIN leaching was, on average, 8.3 and

4.3 kg N ha-1 year-1 in broad-leaved and coniferous for-

ests, respectively (Fig. 6b). The average fraction of

throughfall N lost by leaching was much greater in the

broad-leaved forests (85%) than in the coniferous forests

(18%) for both DIN and TDN (Fig. 5). A possible bias that

may contribute to the high N leaching rate from the broad-

leaved forests was that they are more undisturbed than the

coniferous forests. The leaching rate was also dependent on

N species; overall, 50% of TDN and 22% of DIN input in

throughfall was leached across all forests (Fig. 6).

Discussion

Nitrogen deposition

Precipitation DIN deposition on the studied forest sites in

China was, on average, 16.6 kg N ha-1 year-1 which

was more than 5 times the background level of

2.2–2.9 kg N ha-1 year-1 measured at two sites located in

remote areas (Table 1). This is much higher than the pre-

viously estimated average value of 9.9 kg N ha-1 year-1

based on a mapping exercise for the whole of China (Lu

and Tian 2007), but similar to the mean value for eight

EANET sites in China (Table 1). However, the spatial

pattern in precipitation DIN input in this study was similar

to that obtained by Lu and Tian (2007), covering high DIN

input in the central southern regions, for example Guang-

dong, Jiangxi, Zhejiang, Chongqing, Hunan, and low input

in the underdeveloped areas in the west and north of China

(Figs. 1, 2). The higher N input in precipitation on to the

forest sites included in our study compared with the

national level estimated by Lu and Tian (2007) may be

because of uneven distribution of investigated forest sites

with many sites in southern China, especially in the Pearl

River Regions of Guangdong province, one of greatest

economic centers in China with heavy air N pollution

(Fig. 1, Fang et al. 2011). A stronger impact of urban rather

than agricultural sources of atmospheric Nr is supported by

the higher NO3
- fraction in precipitation at our study sites

(37%, Fig. 3b) compared with that in the national level

estimate at 28% (Lu and Tian 2007). The DIN input with

precipitation is also substantially higher than that measured

in Europe, the US, and east Asia (Table 1).

The average TDN input in precipitation, at 18.0 kg N

ha-1 year-1, differs only slightly from that measured as

DIN input, and the spatial patterns are similar (Fig. 2). The

difference between TDN and DIN input at 1.4 kg N ha-1

year-1 could comprise DON, although TDN and DIN were

not always measured at the same sites. Neff et al. (2002b)

reported a median value of 2.2 kg N ha-1 year-1 for pre-

cipitation DON flux in a global synthesis. However, the

measured DON flux was found to be, on average,

7.7 kg N ha-1 year-1 for the six Chinese forest sites

included in our synthesis (Fig. 2b). This is in the upper

range of that reported for other regions of the world

(0.6–10.9 kg N ha-1 year-1, Neff et al. 2002b), but in

agreement with other reports from China: Xiao (2005)

reported high DON input (on average 15.8 kg N ha-1

year-1) for eleven sites in Zhangzhou city of Fujian

province, and Zhang et al. (2008) reported that DON

deposition in precipitation at 15 rural, suburban and urban

sites ranged from 1 to 27 kg N ha-1 year-1, with an

average of 8.6 kg N ha-1 year-1. At the 6 forest sites in

our database, DON input accounted, on average, for 32%

Fig. 5 Throughfall N input vs. leaching loss in broad-leaved forests

(a) and coniferous forests (b) in China. In a, y = 0.85x - 6.18,

R2 = 0.71, P = 0.011 for DIN, n = 7; y = 0.85x - 5.15, R2 = 0.68,

P = 0.002 for TDN, n = 10. In b, y = 0.12x ? 1.64, R2 = 0.26,

P = 0.035 for DIN, n = 14; y = 0.14x - 0.39, R2 = 0.40, P = 0.03

for TDN, n = 10. The regression lines in figures are across both DIN

and TDN

Fig. 6 Throughfall N input versus leaching loss in China for TDN

(a) or DIN (b). The regression lines are across all forests
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of the TDN in precipitation, similar to the average fraction

for the 15 sites studied throughout China (Zhang et al.

2008). These results suggest that high DON deposition

does exist in the heavily air polluted regions in China and

that DON is an important N fraction in precipitation inputs

which needs more attention in future studies. The sources

of high DON inputs are unclear (Fang et al. 2008). Con-

ceptually, atmospheric organic N (AON), which is mea-

sured as DON in precipitation and throughfall, can be

divided into three types—organic nitrate, reduced AON,

and biological/terrestrial AON (Neff et al. 2002b). Organic

nitrates are oxidized end products of reactions of hydro-

carbons with NOx (NO ? NO2) in polluted air masses such

as those occurring over southern China. Thus, organic

nitrates are likely to contribute to the high DON deposition

observed in some regions with severe N pollution (Fang

et al. 2008).

In this data compilation, throughfall DIN input ranged

from 2.8 to 71.0 kg N ha-1 year-1, which is similar to the

range compiled for European forests (\5 kg N ha-1 year-1

in remote forest ecosystems to [ 60 kg N ha-1 year-1 in

heavily polluted areas; Gundersen 1995; Dise et al. 1998;

Gundersen et al. 2006). In Europe sites with high

throughfall, N input was mainly caused by increased NH4
?

inputs, and NO3
- was a dominant fraction at the lower

deposition sites (Gundersen 1995). In China, it seems that

both NH4
? and NO3

- increased concurrently (Fig. 3), but

with NH4
? overall accounting for 63% of the DIN input.

Hence NH4
? is the dominant N form entering forests in

both Europe and China, pointing to agricultural emissions

as the main source of N. In contrast, in North America

NO3
- is slightly more important than NH4

? in N input to

forests (Ollinger et al. 1993; Fenn and Poth 2004; Holland

et al. 2005; Golden and Boyer 2009).

Forest canopies are efficient traps of gases and particles

from the air, and, hence, N deposition in throughfall is

usually substantially larger than both precipitation N

deposition and total N deposition on open land (Fenn and

Poth 2004). Conifers tend to have higher throughfall N

input than broad-leaved forests, because of differences in

leaf area, leaf retention, and canopy structure (Kristensen

et al. 2004). However, precipitation N is also likely to be

taken up by leaves through interactions with the canopy,

particularly at low N input sites (Lovett and Lindberg

1993). At the sites included in our database both

enhancement of throughfall N and a net canopy uptake was

observed (Fig. 4).

In China the dry deposition of N (i.e., calculated as

throughfall minus precipitation N) was almost always less

than precipitation N (sites falling below the 2:1 line in

Fig. 4) whereas in Europe dry deposition was up to twice

the precipitation N (Kristensen et al. 2004). In North

America, dry deposition usually contributes only a few

kg N ha-1 year-1 or ca. 20–46% of wet deposition in NE

USA (Ollinger et al. 1993). An exception to this pattern in

North America was observed in the summer-dry climate in

the mountains of southern California downwind from the

major cities. N deposition in precipitation was 3.3 and

12 kg N ha-1 year-1 at a remote and an exposed site,

respectively, whereas their particular throughfall N depo-

sition was 15 and 144 kg N ha-1 year-1, respectively

(Fenn and Poth 2004). A reason for these continental dif-

ferences could be that the European forests monitored are

closer to the agricultural N sources in the patchy landscape

than the forest monitored in China. This may also be the

reason for the low dry deposition fraction in NE USA

where data come from large forest areas remote from air

pollution source regions. Gas and particle concentrations

decline with distances from sources, in part because of

incorporation in clouds. Another reason for low dry

deposition in China could be the humid climatic conditions

in the southern provinces from which most of the high

deposition data originate. High humidity, frequent rainfall,

and low wind speeds limit dry deposition and promote

incorporation in clouds and rain, as opposed to the situation

with high dry deposition in the dry climate of California

discussed above.

In the broad-leaved forests throughfall N was more

consistently higher than precipitation N (Fig. 4a) compared

with in the coniferous forests, where, in turn, the variability

was high (Fig. 4b). We did not observe a significant dif-

ference in throughfall DIN input between broad-leaved and

coniferous forests across the dataset, as is usually observed

in temperate forests (Kristensen et al. 2004). This could be

because most Chinese broad-leaved trees are evergreens

whereas temperate broad-leaved trees are deciduous. The

observed lower throughfall N in temperate broad-leaved

trees compared with conifers is largely attributed to the

leafless winter period for the broad-leaved trees (Kristensen

et al. 2004). Then again, the minimum importance of dry

deposition in China discussed above makes it less likely

that the canopy structure or forest type will modify the total

N input measured in throughfall.

Nitrogen leaching

Input–output budgets from European forests have shown

that above a threshold loading of approximately

10 kg N ha-1 year-1 in throughfall N, many sites seem to

be N saturated and have NO3
- leaching rates above

5 kg N ha-1 year-1 (Gundersen 1995; Nilsson et al. 1998;

Dise et al. 1998, 2009; MacDonald et al. 2002; Kristensen

et al. 2004). Below 10 kg N ha-1 year-1 in throughfall,

elevated NO3
- leaching is rare in all data compilations

from Europe (Gundersen et al. 1998b; Nilsson et al. 1998;

MacDonald et al. 2002; Kristensen et al. 2004; Dise et al.
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2009). All European sites receiving more than

25–30 kg N ha-1 year-1 of N in throughfall had elevated

NO3
- leaching (Gundersen et al. 2006; Dise et al. 2009). In

a compilation of input–output data from streams in NE

USA, Aber et al. (2003) reported a threshold at N depo-

sition of 7 kg N ha-1 year-1. However, they emphasized

that the N deposition was probably underestimated some-

what because it was the estimate for the base of the

catchment, because deposition usually increases with ele-

vation (Gundersen et al. 2006). The N input thresholds

for elevated NO3
- leaching found on both continents

may therefore nearly be identical at approximately

10 kg N ha-1 year-1 (Aber et al. 2003).

In China, however, elevated N leaching above

5 kg N ha-1 year-1 occurs in forest ecosystems when they

receive throughfall N of more than 5 kg N ha-1 year-1

(Figs. 5, 6). The relatively high N leaching in some forests

receiving low N input is different from those in European

and American forests where a threshold is more distinct.

The reason for this is unclear. One may argue that this is

because of differences in climatic drivers. In temperate

climate (Europe and North America) the soil water mainly

moves in the dormant season (fall, winter, and spring)

when there is no/low biological release of N, whereas in

monsoon Asia, particularly in southern and eastern China,

there is excess water in the most biologically active season

(summer) where some N will be available for transport

with moving water. In other words, with monsoon climate

with warm and wet summers there will be some unavoid-

able N loss, controlled more by hydrological processes than

by lack of biological demand (Ohte et al. 2001; Fang et al.

2008). N leaching above 10 kg N ha-1 year-1 occurs

when throughfall N input is higher than 17 kg N ha-1

year-1 (Fig. 5). Nevertheless, forests receiving 5–45 kg N

ha-1 year-1 respond very differently with regard to N

leaching; some forests retain N inputs almost fully and a

few forests release almost all N input.

Only 22% of throughfall N input was leached from

Chinese forest ecosystems if considering only DIN,

although the leaching rate of throughfall input was half for

TDN (Fig. 6). Ignoring N losses via other pathways, for

example denitrification, this implies that approximately

80% of N input has been retained in the ecosystems. This

retention is similar to the results based on 15N field

experiments in nine temperate forests (Nadelhoffer et al.

1999). The overall N leaching rate in the Chinese forests is

lower than the 50–59% observed for European forests

(Gundersen 1995; Gundersen et al. 1998a, 2006; Dise et al.

1998, 2009). This could be because the history of N pol-

lution in China is shorter than in Europe. Economic

development started to increase in the early 1980s in

China, associated with the heavy use of N fertilizer and

increased emission of NOx and N2O (Zheng et al. 2002). In

contrast, both fertilizer N use and NOx emission increased

sharply in the 1960s and 1970s and peaked around the

1980s in Europe (van Egmond et al. 2002).

Another possible reason for the overall lower N leaching

is that the N leaching in our data compilation included an

estimate of N leaching into streams at seven of the 21

forests whereas the database for European forests mainly

included that estimate below the rooting zone (Gundersen

et al. 1998a, 2006; Dise et al. 2009). Nitrogen leaching

from below the rooting zone plus overland flow directly

reflects the dissolved N response of plant–soil interactions

in the N cycle, whereas stream water reflects additional N

processes, for example accumulation in bog areas, deni-

trification in the riparian or hyporheric zone, and in-stream

N conversion. These ‘‘stream’’ processes mainly consume

dissolved N, and thus lower concentrations of N should be

expected in stream water than in soil water below the

rooting zone (Gundersen et al. 2006).

Implications for CO2 sequestration in Chinese forests

The effect of N deposition on forest C sequestration relies

largely on the sensitivity of ecosystem C processes

response to N. Debate on this topic has recently been

intensified by Magnani et al. (2007). In this paper, a strong

positive relationship was found between mean lifetime C

sequestration (in terms of net ecosystem production;

NEPav) and N deposition. Their data indicated a carbon

response of approximately 475 kg C per kg N in total N

deposition. Sutton et al. (2008) found the response to be at

177 kg C per kg, when plotting the measured NEPav data

of Magnani et al. (2007) against better estimates of total N

deposition data. However, these rates of C sequestration

from N deposition input were still thought to be too high,

because other factors co-varied with N deposition and may

have contributed to the observed increase in NEP (de Vries

et al. 2009).

A short-term (1–3 year) 15N labeled tracer experiment

in nine temperate forests suggested that 5% of the N input

ended up in forest biomass whereas 70% was retained in

soils with low C/N ratio (Nadelhoffer et al. 1999).

Assuming a constant N uptake fraction of 0.05 and a

constant N retention fraction of 0.70, and an average C/N

ratio in stem wood of 500 and in forest soils of 30,

then additional N deposition of 1 kg ha-1 year-1 leads to a

C sequestration of 46 kg ha-1 year-1, of which

25 kg ha-1 year-1 is retained in stem wood (0.05 9 500)

and 21 kg ha-1 year-1 in soil (0.7 9 30) (Nadelhoffer

et al. 1999; see also de Vries et al. 2009). For European

forests, de Vries et al. (2009) synthesized the ranges in C

sequestration per kg N addition in above-ground biomass

and in soil organic matter. They found that the results from

various studies were in close agreement and showed that
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above-ground accumulation of carbon in forests is gener-

ally within the range 15–40 kg C per kg N, and that the

uncertainty in C sequestration per kg N addition in soils is

larger than for above-ground biomass and varies on aver-

age between 5 and 35 kg C per kg N. For Europe, de Vries

et al. (2009) suggested approximately 25 kg C per kg N as

likely C sensitivity to N for both biomass and soil.

In China, average DIN fluxes in throughfall were 21.0 and

23.1 kg N ha-1 year-1 in the 1990s and 2000s, respectively

(Table 3). If we assume a C sensitivity of 25 kg C per kg N

in the biomass, as suggested for European forests (de Vries

et al. 2006), this corresponds to forest C sequestration of

72 Tg year-1 for China in the 1990s (Table 3). Similarly, the

C sequestration estimate was 113 Tg year-1 for the 2000s,

owing to 2.1 kg N ha-1 year-1 more N input and expansion

of the forest area (Table 3). On the basis of forest inventory

data it was estimated that forest biomass absorbed

92 Tg C year-1 in China from 1994 to 2003 (Fang et al.

2007; Piao et al. 2009). Thus, this observed C sequestration

could almost alone be explained by N deposition (with forest

expansion accounting for *30 Tg year-1 of the calculated

change from the 1990s to the 2000s, Table 3). It should be

noted that the greatest uncertainty in the calculations, how-

ever, is the C response to N deposition for Chinese forests.

Most likely this C sensitivity to N deposition will be lower

than 25, because the observed forest growth increase in China

(92 Tg C year-1) is probably caused by several factors, for

example improved forest management, climate change, and

CO2-fertilisation, and not alone by N deposition as suggested

by our approximate calculation (Table 3).

Following the evidence reviewed by de Vries et al.

(2009) an additional 5–35 kg C per kg N could be

sequestered in the soil. A soil organic C stock increase of

540–690 kg C ha-1 year-1 was observed over two dec-

ades at a site in south China (Zhou et al. 2006) with a

throughfall DIN input at 35 kg N ha-1 year-1 (Fang et al.

2008). If this soil C increase is caused by the elevated N

alone, the soil C sensitivity is *15 kg C per kg N. Using

this rate, Chinese forests roughly sequester an additional

70 Tg C year-1 in soil organic matter. Altogether N

induced C sequestration in China could be of the order of

100–200 Tg C year-1. Considering this large potential

effect of N deposition on C sequestration, much more

detailed studies are urgently required in order to explore

the effect of N deposition on C sequestration of Chinese

forests.

Acknowledgments This work was supported by the National Nat-

ural Science Foundation of China (nos 40703030 and 30972365),

Grant-in-Aid for Scientific Research of Japan Society for Promotion

of Science (JSPS) (no. 21310008), and the Key laboratory of vege-

tation restoration and management of degraded ecosystems, South

China Botanical Garden, Chinese Academy of Sciences. Y.T. Fang

was supported by the JSPS with a Postdoctoral Fellowship for Foreign

Researchers and a grant-in-aid for JSPS Fellows (no. 20-08421).

P. Gundersen received support from the Villum Foundation,

Denmark. We acknowledge Qiaojun Chen for drawing Fig. 1. We thank

two anonymous reviewers for their helpful comments and advice.

References

Aber JD, McDowell W, Nadelhoffer K, Magill A, Berntsen G,

Kamakea M, McNulty S, Currie W, Rustad L, Fernandez I

(1998) Nitrogen saturation in temperate forest ecosystems:

hypothesis revisited. Bioscience 48:921–934

Aber JD, Goodale CL, Ollinger SV, Smith ML, Magill AH, Martin

ME, Hallett RA, Stoddard NERC, Participants JL (2003) Is

nitrogen deposition altering the nitrogen status of northeastern

forests? Bioscience 53:375–389

Chen XY, Mulder J (2007a) Atmospheric deposition of nitrogen at

five subtropical forested sites in South China. Sci Total Environ

378:317–330

Chen XY, Mulder J (2007b) Indicators for nitrogen status and

leaching in subtropical forest ecosystems, South China. Biogeo-

chemistry 82:165–180

Chen BR, Zhang J (1991) Preliminary study on chemistry of leachate

and soils under coniferous forest on northern slope of Changbai

mountains. Acta Pedol Sin 28:372–381 (in Chinese with English

summary)

Chen BF, Zhou GY, Zeng QB, Li YD, Wu ZM (1994) Hydrological

process and nutrient tendency on the regenerative forest

ecosystem of tropical mountain rain forest in Jianfengling,

China. For Res 7:525–530 (in Chinese with English summary)

Chen BF, Zhou GY, Zeng QB, Li YD, Wu ZM (1997) Study on

hydrochemical cycling in tropical mountain rain forest ecosys-

tem. For Res 10:111–117 (in Chinese with English summary)

Chen YR, Liu YF, Lin YM, Li JY, Zhang HZ (2003) Hydrological

process and nutrient dynamics of Schima superba stand in

qianyanzhou experimental area, Jiangxi province. Sci Silvae Sin

39:145–150 (in Chinese with English summary)

Chen YR, Lin YM, Li JY, Liu YF, Yang RR (2004) Rainfall process

and nutrient dynamics of artificial Chinese fir plantation in

Jiangxi Qianyanzhou experimental station. Chin J EcoAgric

12:74–76 (in Chinese with English summary)

Chen SJ, Tian DL, Yan WD, Xiang WH (2006a) Hydrochemical

characteristics of throughfall in different layers of Cinnamomum
camphora plantation. Chin J Ecol 25:747–752 (in Chinese with

English summary)

Table 3 Approximate estimates of nitrogen-induced carbon seques-

tration in forest biomass throughout China

1990s 2000s

Nitrogen deposition in throughfall (kg N ha-1

year-1)

21.0 23.1

Forest area (106 ha) 132–143a 195b

C sequestration in forest trees (Tg C year-1)c *72 113

a Data from Fang et al. (2007)
b Forest area in 2008 based on the 7th national forest inventory in

China, http://www.022net.com/2009/11-17/50706327323043.html
c Estimate assuming that deposition of 1 kg N sequesters 25 kg C

from the atmosphere in additional biomass (de Vries et al. 2009)

348 J For Res (2011) 16:341–350

123

http://www.022net.com/2009/11-17/50706327323043.html


Chen YT, Heh CF, Liu MC, Wu MJ, Lo YC, Chu HC, Feng CM,

Chen LJ, Chen KS, Wang CP, Hsia YJ, Matzner E, Chang SC

(2006b) The investigation of nutrients and hydrological cycling

in the Yuanyang lake montane cloud Forest in Taiwan. Res Sci

28:171–177 (in Chinese with English summary)

de Vries W, Reinds GJ, Gundersen P, Sterba H (2006) The impact of

nitrogen deposition on carbon sequestration in European forests

and forest soils. Glob Change Biol 12:1151–1173

de Vries W, Solberg S, Dobbertin M, Sterba H, Laubhann D, van

Oijen M, Evans C, Gundersen P, Kros J, Wamelink GWW,

Reinds GJ, Sutton MA (2009) The impact of nitrogen deposition

on carbon sequestration by European forests and heathlands. For

Ecol Manage 258:1814–1823

Dise NB, Matzner E, Forsius M (1998) Evaluation of organic horizon

C:N ratio as an indicator of nitrate leaching in conifer forests

across Europe. Environ Pollut 102:453–456

Dise NB, Rothwell JJ, Gauci V, van der Salm C, de Vries W (2009)

Predicting dissolved inorganic nitrogen leaching in European

forests using two independent databases. Sci Total Environ

407:1798–1808

Du CY, Zeng GM, Zhang G, Tang L, Li XD, Huang DL, Huang L,

Jiang YM (2008) Input–output budgets for inorganic nitrogen

under acid rain in a subtropical evergreen mixed forest in

central-south China. Water Air Soil Poll 190:171–181

EANET (2009) Acid deposition monitoring network in East Asia

(EANET): data report 2008. http://www.eanet.cc/product/index.

html

Fan HB, Hong W (2001) Estimation of dry deposition and canopy

exchange in Chinese fir plantations. For Ecol Manage

147:99–107

Fang JY, Guo ZD, Piao SL, Chen AP (2007) Terrestrial vegetation

carbon sinks in China, 1981–2000. Sci China Ser D

50:1341–1350

Fang YT, Gundersen P, Mo JM, Zhu WX (2008) Input and output of

dissolved organic and inorganic nitrogen in subtropical forests of

South China under high air pollution. Biogeosciences 5:339–352

Fang YT, Yoh M, Koba K, Zhu WX, Takebayashi Y, Xiao YH, Lei

CY, Mo JM, Zhang W, Lu XK (2011) Nitrogen deposition and

forest nitrogen cycling along an urban-rural transect in southern

China. Glob Change Biol 17:872–875

Feng YW, Feng ZW, Norio O, Huang YZ (1999) Water quality and

change process of atmospheric precipitation at forest small

catchment of Beijing suburb, China. Adv Environ Sci 7:112–119

(in Chinese with English summary)

Fenn ME, Poth MA (2004) Monitoring nitrogen deposition in

throughfall using ion exchange resin columns: a field test in

the San Bernardino mountains. J Environ Qual 33:2007–2014

Fenn ME, Poth MA, Aber JD, Baron JS, Bormann BT, Johnson DW,

Lemly AD, McNulty SG, Ryan DF, Stottlemyer R (1998)

Nitrogen excess in North American ecosystems: predisposing

factors, ecosystem responses, and management strategies. Ecol

Appl 8:706–733

Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW,

Seitzinger SP, Asner GP, Cleveland CC, Green PA, Holland EA,

Karl DM, Michaels AF, Porter JH, Townsend AR, Vörösmarty
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