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ABSTRACT

Karst rocky desertification is a special kind of land 
desertification developed under violent human impacts on 
the vulnerable eco-geo-environment of karst ecosystem. The 
fractional cover of photosynthetic vegetation (PV), non-
photosynthetic vegetation (NPV), bare soil and exposed 
bedrock are key indicators of the extent and degree of land 
degradation in karst region. The vegetation fractional cover 
can be estimated approximately from remote sensing with 
vegetation indices. However, the vegetation indices cannot 
be easily applicable to all land cover types. In this study, we 
developed new spectral indices, karst rocky desertification 
synthesis indices (KRDSI), were then designed based on 
tied-spectrum permutation and unique spectral 
characteristics of main land cover types. Comparing with 
the use of traditional vegetation indices and LSU, the 
KRDSI was more consistent with the field measurement of 
main land cover fractions. Our study indicates that KRDSI 
is a useful tool for karst rocky desertification monitoring 
with remotely sensed data. 
 

Index Terms— Reflectance spectra, karst rocky 
desertification synthesis indices (KRDSI), vegetation 
indices, land degradation, Southwest China

1. INTRODUCTION 
 
Karst region is a typical ecological fragile zone constrained 
by geological setting, with small environmental and anti-
interference capability [1], [2]. Southwest China is one of 
the largest karst regions in the world. It is estimated that the 
karst geomorphology covers about 540, 000 km2 in this 
region. Karst rocky desertification there has expanded at an 
overwhelming rate during the past few decades. Karst rocky 
desertification is a special kind of land degradation process 
that soil was eroded seriously or thoroughly, bedrock was 
exposed widespread, carrying capability of land declined 
seriously, and ultimately, landscape view of karst land 
degradation appeared similar to desert under violent human 
impacts on the vulnerable eco-geological setting. Karst 

rocky desertification, which followed sandy desertification 
in Northwest China and soil and water loss in loess plateau, 
becomes one of the most seriously ecological problems in 
China [3]. 

To prevent and control karst rocky land degradation 
process, the point is to quickly and accurately understand 
the distribution, occurrence, development, and evolvement 
of karst rocky desertification. The fractional cover of 
photosynthetic vegetation (PV), non-photosynthetic 
vegetation (NPV), bare soil and exposed bedrock are 
essential in characterizing the surface symptoms of the 
extent and degree of karst rocky desertification [2], [4]. 
These degradation features can be detected directly or 
indirectly by using remote sensing images [5], [6]. The 
analyses of the fraction images yield the most information 
about land degradation [7]. The fractional cover of 
vegetation can be estimated approximately from remote 
sensing images through vegetation indices. Previous 
researches have proposed a color index, form index and 
intensity index for mapping land degradation [8], [9]. 
However, the vegetation indices cannot be easily applicable 
to all land cover types. The principal objective of this study 
is thus to develop and evaluate new spectral indices for 
karst rocky desertification in Southwest China. Specific 
objectives included: (1) comparing and evaluating the 
existed and widely used vegetation indices for extraction of 
fractional cover of PV, NPV, bare soil,  and exposed 
bedrock; (2) analyzing the unique spectral characteristics of 
PV, NPV, bare soil, and exposed bedrock and developing 
new spectral indices for estimating the fractional cover of 
surface symptoms of karst rocky desertification; (3) 
comparing the performance and suitability of new 
developed spectral indices with linear spectral unmixing 
approach. 
 

2. METHODS 
 
2.1 Study area

The study area of this study is located in Huanjiang County, 
Guangxi Procinve, Southwest China (E108°18 , N24°43 ). 
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All the sites are at Huanjiang Experimental Station of Karst 
Ecosystem, Chinese Academy of Sciences, which belongs 
to Chinese Ecosystem Research Network (CERN). It is a 
typical karst geomorphology. Mean annual precipitation is 
1389 mm/yr, and mean annual temperature is 19.9 . The 
vegetation cover is mainly made up of typical climbing 
shrub in carbonate rock region. 
 
2.2 Data collection and processing 

Data collection took place during May 1-8, 2008, which 
was in the peak growing season. A total of 91 samples were 
randomly selected with different abundance of PV, NPV, 
bare soil, and exposed bedrock. We measured the spectra of 
each sample by using an ASD FieldSpecFR spectrometer 
and placed a black colored circle frame to mark the area 
covered by the sensor, and took a photograph of it with a 
digital camera. To reduce the noise level, every 
measurement was recorded as the average of 10 
consecutively acquired spectra. The conversion to spectral 
reflectance was done by dividing the radiance spectra of the 
vegetation samples by the radiance spectra of the spectralon 
panel. 

To estimate the PV, NPV, bare soil, and exposed bedrock 
of each sample, we firstly clipped the sampling area 
surrounded by the black circle frame in a digital photo with 
Photoshop software. And then visually marked the borders 
of PV, NPV, bared soil, and exposed bedrock as regions of 
interest (ROIs) in ENVI (Environment foe Visualizing 
Images). The number of PV, NPV, bare soil, and exposed 
bedrock pixels was counted by a program coded in IDL 
(Interactive Data Language). 
 
2.3 Selected vegetation indices 

To compare and evaluate the possibility to extract fractional 
cover of different land cover types with traditional 
vegetation indices, we estimated the coverage of different 
land cover types with existed and widely used vegetation 
spectral indices. The vegetation spectral indices were 
selected as follows: (1) indices based on absorption features 
of photosynthetic pigments: area of red edge (ARE), area of 
chlorophyll absorption (ACA); (2) indices based on the 
normalized difference: simple ratio vegetation index (RVI), 
normalized difference vegetation index (NDVI); (3) indices 
based on soil-line: soil-adjusted vegetation index (SAVI), 
modified soil-adjusted vegetation index (MSAVI); indices 
based on three discrete bands: triangular vegetation index 
(TVI), modified chlorophyll absorption ratio index 
(MCARI). Each vegetation index was formulated as [10]: 
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Where is the spectral reflectance;  is the integral area 
formed by point (550 nm, ) and (730 nm,
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connected beeline; S is the integral area formed by 550-730 
nm spectral curve. The value of factor L=0.5. 

2.4 Developing new spectral indices 

Many researches have been expended to improve vegetation 
indices and render them insensitive to variations in 
illumination conditions, observing geometry, and 
background. Thus, the performance and the suitability of a 
particular index are generally determined by the sensitivity 
of the index to characteristics of interest [10]. As the 
mixture pixel spectra is more close to the highest abundance 
of its components, we built several spectral variables based 
on unique absorption features of different land cover types. 
But, there are differences among spectrum of inter-type, and 
then we used tied-spectra, a spectral characteristic 
normalized method of subtracting the spectral reflectance 
values within a given wavelength range by the reflectance 
value at the first wavelength, to reduce the differences of 
inter-type. The new spectral indices, karst rocky 
desertification synthesis indices (KRDSI), were built as 
follows: 
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Where is the spectral reflectance with tied-spectra 

permutation;  is the integral area formed by point (a,0S a ) 

and (b, b ) connected beeline; S is the integral area formed 
by a to b spectral curve. For NPV, a=2100 nm, b=2200 nm, 
c=2300 nm; for bare soil, a=2100 nm, b=2230nm, c=2330 
nm; for exposed bedrock, a=2200 nm, b=2380 nm, 
c=2350nm.  
 

3. RESULTS AND DISCUSSION 

3.1 Estimation of fractional cover with vegetation indices 

We used linear regression method to compare and evaluate 
the appropriate of estimation of fractional cover of different 
land-cover types with existed and widely used vegetation 
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spectral indices. The results show that the fractional cover 
of vegetation can be estimated approximately from remote 
sensing images through vegetation indices (Table 1). While 
the fractional cover of NPV, bare soil, and exposed bedrock 
cannot be easily and directly estimated by using of 
traditional vegetation spectral vegetation. This can be 
illuminated from Fig.1. Other vegetation spectral indices did 
not demonstrated here. It may be due to the fact that most 
vegetation spectral indices were built based on red and 
infrared spectral regions, which were the spectral features of 
vegetation spectral curve. 
 
Table 1 Linear regression of fractional cover of vegetation 

with vegetation indices
Vegetation 

spectral indices 
Linear 

regression 
R2

ARE y=300.17x-11.02 0.80 
ACA y=4.88x-2.66 0.81 
RVI y=12.52x-14.88 0.79 

NDVI y=128.35x-31.70 0.78 
SAVI y=1.84x-0.18 0.82 

MSAVI y=1.79x-0.13 0.82 
TVI y=0.04x-0.04 0.81 

MCARI y=7.32x-0.00 0.81 
 

 

 
Fig. 1 Linear regression of fractional cover of NPV, bare 

soil, and exposed bedrock with MCARI. 
 
3.2 Spectral features of main land cover types 

We analyzed the spectral features of PV, NPV, bare soil, 
and exposed bedrock and were shown in Fig.2. PV shows 
characteristic absorption features in the VNIR mainly, from 
chlorophyll (near 400-600 nm) and water absorption bands 
(910, 1100, 1400, 1900 nm). PV can be recognized with the 
appearance of the red edge at 680-760nm nm and 
continuous drop in reflectance afterward, with a very low 

reflectance in shortwave infrared region. NPV shows a soil-
like slow continuous rise in reflectance in the VNIR. This is 
the reason why NPV cannot be differentiated from the soil, 
since it uses only the red edge as green indicator. NPV 
spectra shows characteristic absorption features mainly in 
the shortwave spectral region at near 2100 and 2300 nm, 
which was dominated by cellulose and lignin spectral 
features.  
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Fig. 2 Spectral features of PV, NPV, bare soil, and exposed 

bedrock. 
As for bare soil and exposed bedrock, the short 

wavelength infrared (SWIR, 2100-2350 nm) spectral range 
allows to differentiate between bare soil and exposed 
bedrock. The bare soil shows clay characteristic feature near 
2200 nm and the carbonate spectral typical feature near 
2330 nm. In the exposed bedrock, double absorption feature 
near 2200 nm is often identified for bedrock in karst regions 
is mostly carbonate rock and is clay-rich rocks. While in the 
bare soils where smectite is more often the type of clay 
detected and have single absorption near 2200 nm [11]. 
Therefore, the short wavelength infrared (SWIR, 2100-2350 
nm) was the best option for characterization of PV, NPV, 
bare soil and exposed bedrock. 
 
3.3 Performance of new developed spectral indices. 

We used the spectral features above-mentioned to built new 
spectral indices, karst rocky desertification synthesis indices 
(KRDSI). As there are differences among spectrum of inter-
type, and thus we used tied-spectra to reduce the differences 
before calculating KRDSI. The performance of KRDSI was 
showed in Table 2 and Fig.3. The KRDSI, which built 
based on NPV and bare soil absorption features, were 
relatively well estimated the fractional cover of NPV and 
bare soil. However, the estimated results of exposed 
bedrock were relative not so well but had largely improved 
compared with traditional vegetation indices. It was due to 
the weathering processes of carbonate rocks in karst regions 
and resulted in the variability of absorption features of 
bedrock [12]. We also compared KRDSI with linear spectral 
unmixing (LSU) to estimate fractional cover of exposed 
bedrock. The performance of KRDSI was better (Fig. 3). 
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Table 2 Linear regression of fractional cover of NPV, bare 

soil, and exposed bedrock with KRDSI. 
 Spectral 

indices 
Linear regression R2

KRDSI1 y=491.29x-473.96 0.602 
KRDSI2 y=2385.05x+17.37 0.643 
KRDSI3 y=2373.25x+21.17 0.708 

 
 

NPV 
KRDSI4 y=20.35x+21.25 0.704 
KRDSI1 y=437.07x-412.13 0.688 
KRDSI2 y=2814.96x+25.29 0.734 
KRDSI3 y=3874.08x+21.79 0.736 

 
 

Soil 
KRDSI4 y=67.99x+24.40 0.646 
KRDSI3 y=1823.79x+7.59 0.533  

  Rock KRDSI4 y=16.23x+14.07 0.399 
 

 

 
Fig.3 Compare the performance of KRDSI and LSU. 

 
4. CONCLUSION 

Karst rocky desertification is a major eco-environmental 
problem in karst region, Southwest China. The present 
study has provided the opportunity for characterizing and 
quantifying surface symptoms of karst rocky desertification 
using new spectral indices called KRDSI. KRDSI was built 
based on the unique spectral features of NPV, bare soil, and 
exposed bedrock and can be used to quickly estimate the 
fractional cover of NPV, bare soil, and exposed bedrock. 
The KRDSI is methodologically simple and is a useful tool 
for land degradation mapping with remote sensing images. 
The advent of new hyperspectral sensors will allow even 
more extensive applications of this spectral approach. 
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